DOI QR코드

DOI QR Code

An Ultrasensitive FRET-based DNA Sensor via the Accumulated QD System Derivatized in the Nano-beads

  • Yang, Lan-Hee (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Ahn, Dong June (Department of Biomicrosystem Technology, Korea University) ;
  • Koo, Eunhae (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET))
  • Received : 2018.06.11
  • Accepted : 2018.08.21
  • Published : 2018.12.20

Abstract

$F{\ddot{o}}rster$ resonance energy transfer (FRET) is extremely sensitive to the separation distance between the donor and the acceptor which is ideal for probing such biological phenomena. Also, FRET-based probes have been developing for detecting an unamplified, low-abundance of target DNA. Here we describe the development of FRET based DNA sensor based on an accumulated QD system for detecting KRAS G12D mutation which is the most common mutation in cancer. The accumulated QD system consists of the polystyrene beads which surface is modified with carboxyl modified QDs. The QDs are sandwich-hybridized with DNA of a capture probe, a reporter probe with Texas-red, and a target DNA by EDC-NHS coupling. Because the carboxyl modified QDs are located closely to each other in the accumulated QDs, these neighboring QDs are enough to transfer the energy to the acceptor dyes. Therefore the FRET factor in the bead system is enhancing by the additional increase of 29.2% as compared to that in a single QD system. These results suggest that the accumulated nanobead probe with conjugated QDs can be used as ultrasensitive DNA nanosensors detecting the mutation in the various cancers.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry & Energy (MOTIE)

References

  1. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22 (2003). https://doi.org/10.1038/nrc969
  2. Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517-531 (2008). https://doi.org/10.1038/nrm2438
  3. Vasan, N., Boyer, J.L. & Herbst, R.S. A RAS Renaissance: Emerging Targeted Therapies for KRAS-Mutated Non-Small Cell Lung Cancer. Clin. Cancer Res. 20, 3921-3930 (2014). https://doi.org/10.1158/1078-0432.CCR-13-1762
  4. Riely, G.J., Marks, J. & Pao, W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc. 6, 201-205 (2009). https://doi.org/10.1513/pats.200809-107LC
  5. Patolsky, F. et al. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots. J. Am. Chem. Soc. 125, 13918-13919 (2003). https://doi.org/10.1021/ja035848c
  6. Medintzi, I.L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630-638 (2003). https://doi.org/10.1038/nmat961
  7. Medintz, I.L. et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. U.S.A. 101, 9612-9617 (2004). https://doi.org/10.1073/pnas.0403343101
  8. Clapp, A.R. et al. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. J. Am. Chem. Soc. 126, 301-310 (2004). https://doi.org/10.1021/ja037088b
  9. Zhang, C.Y., Yeh, H.C., Kuroki, M.T. & Wang, T.H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826-831 (2005). https://doi.org/10.1038/nmat1508
  10. Bakalova, R., Zhelev, Z., Ohba, H. & Baba, Y., Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences. J. Am. Chem. Soc. 127, 11328-11335 (2005). https://doi.org/10.1021/ja051089h
  11. Zhou, D. et al. Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem. Commun. 4807-4809 (2005).
  12. Zhang, C. & Johnson, L.W. Quantum Dot-Based Fluorescence Resonance Energy Transfer with Improved FRET Efficiency in Capillary Flows. Anal. Chem. 78, 5532-5537 (2006). https://doi.org/10.1021/ac0605389
  13. Wargnier, R. et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett. 4, 451-457 (2004). https://doi.org/10.1021/nl0350938
  14. Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281-286 (2001). https://doi.org/10.1021/nl015519n
  15. Medintz, I.L., Trammell, S.A., Mattoussi, H. & Mauro, J.M. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126, 30-31 (2004). https://doi.org/10.1021/ja037970h
  16. Pons, T., Medintz, I.L., Wang, X., English, D.S. & Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. J. Am. Chem. Soc. 128, 15324-15331 (2006). https://doi.org/10.1021/ja0657253
  17. Knemeyer, J.P., Marm'e, N. & Sauer, M. Probes for detection of specific DNA sequences at the single-molecule level. Anal. Chem. 72, 3717-3724 (2000). https://doi.org/10.1021/ac000024o
  18. Barnes, M.D., Ng, K.C., Whitten, W.B. & Ramsey, J.M. Detection of single rhodamine-6g molecules in levitated microdroplets. Anal. Chem. 65, 2360-2365 (1993). https://doi.org/10.1021/ac00065a032
  19. Shera, E.B. et al. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553-557 (1990). https://doi.org/10.1016/0009-2614(90)85485-U
  20. Nie, S.M., Chiu, D.T. & Zare, R.N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018-1021 (1994). https://doi.org/10.1126/science.7973650
  21. Eigen, M. & Rigler, R. Sorting single molecules-application to diagnostics and evolutionary biotechnology. Proc. Natl Acad. Sci. U.S.A 91, 5740-5747 (1994). https://doi.org/10.1073/pnas.91.13.5740
  22. Castro, A. & Williams, J.G.K. Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA. Anal. Chem. 69, 3915-3920 (1997). https://doi.org/10.1021/ac970389h
  23. Wang, T.H., Peng, Y.H., Zhang, C.Y., Wong, P.K. & Ho, C.M. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. J. Am. Chem. Soc. 127, 5354-5359 (2005). https://doi.org/10.1021/ja042642i
  24. Zhang, C.Y., Chao, S.Y. & Wang, T.H. Comparative quantification of nucleic acids using single-molecule detection and molecular beacons. Analyst 130, 483-488 (2005). https://doi.org/10.1039/b415758c
  25. Wabuyele, M.B. et al. Approaching real-time molecular diagnostics: Single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J. Am. Chem. Soc. 125, 6937-6945 (2003). https://doi.org/10.1021/ja034716g
  26. Dabbousi, B.O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463-9475 (1997). https://doi.org/10.1021/jp971091y
  27. Leatherdale, C.A., Woo, W.K., Mikulec, F.V. & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619-7622 (2002). https://doi.org/10.1021/jp025698c
  28. Ute, R-G. et al. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763-775 (2008). https://doi.org/10.1038/nmeth.1248
  29. Zhang, C.-Y., Yeh, H.-C., Kuroki, M.T. & Wang, T.-H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826-831 (2005). https://doi.org/10.1038/nmat1508
  30. Zhang, C. & Johnson, L.W. Microfluidic control of fluorescence resonance energy transfer: Breaking the FRET limit, Angew. Chem. Int. Ed. 46, 3482-3485 (2007). https://doi.org/10.1002/anie.200604861
  31. Yang, L.-H., Ahn, D.J. & Koo, E. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization, Mater. Sci. Eng., C 69, 625-630 (2016). https://doi.org/10.1016/j.msec.2016.07.021
  32. Bae, W.K. & Lee, S. Single-Step Synthesis of Quantum Dots with Chemical Composition, Gradients. Chem. Mater. 20, 531-539 (2008). https://doi.org/10.1021/cm070754d
  33. Clapp, A.R. et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126, 301-310 (2004). https://doi.org/10.1021/ja037088b

Cited by

  1. Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications vol.14, pp.1, 2018, https://doi.org/10.1007/s13206-020-4111-9