Acknowledgement
Supported by : Ministry of Trade, Industry & Energy (MOTIE)
References
- Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22 (2003). https://doi.org/10.1038/nrc969
- Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517-531 (2008). https://doi.org/10.1038/nrm2438
- Vasan, N., Boyer, J.L. & Herbst, R.S. A RAS Renaissance: Emerging Targeted Therapies for KRAS-Mutated Non-Small Cell Lung Cancer. Clin. Cancer Res. 20, 3921-3930 (2014). https://doi.org/10.1158/1078-0432.CCR-13-1762
- Riely, G.J., Marks, J. & Pao, W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc. 6, 201-205 (2009). https://doi.org/10.1513/pats.200809-107LC
- Patolsky, F. et al. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots. J. Am. Chem. Soc. 125, 13918-13919 (2003). https://doi.org/10.1021/ja035848c
- Medintzi, I.L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630-638 (2003). https://doi.org/10.1038/nmat961
- Medintz, I.L. et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. U.S.A. 101, 9612-9617 (2004). https://doi.org/10.1073/pnas.0403343101
- Clapp, A.R. et al. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. J. Am. Chem. Soc. 126, 301-310 (2004). https://doi.org/10.1021/ja037088b
- Zhang, C.Y., Yeh, H.C., Kuroki, M.T. & Wang, T.H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826-831 (2005). https://doi.org/10.1038/nmat1508
- Bakalova, R., Zhelev, Z., Ohba, H. & Baba, Y., Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences. J. Am. Chem. Soc. 127, 11328-11335 (2005). https://doi.org/10.1021/ja051089h
- Zhou, D. et al. Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem. Commun. 4807-4809 (2005).
- Zhang, C. & Johnson, L.W. Quantum Dot-Based Fluorescence Resonance Energy Transfer with Improved FRET Efficiency in Capillary Flows. Anal. Chem. 78, 5532-5537 (2006). https://doi.org/10.1021/ac0605389
- Wargnier, R. et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett. 4, 451-457 (2004). https://doi.org/10.1021/nl0350938
- Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281-286 (2001). https://doi.org/10.1021/nl015519n
- Medintz, I.L., Trammell, S.A., Mattoussi, H. & Mauro, J.M. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126, 30-31 (2004). https://doi.org/10.1021/ja037970h
- Pons, T., Medintz, I.L., Wang, X., English, D.S. & Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. J. Am. Chem. Soc. 128, 15324-15331 (2006). https://doi.org/10.1021/ja0657253
- Knemeyer, J.P., Marm'e, N. & Sauer, M. Probes for detection of specific DNA sequences at the single-molecule level. Anal. Chem. 72, 3717-3724 (2000). https://doi.org/10.1021/ac000024o
- Barnes, M.D., Ng, K.C., Whitten, W.B. & Ramsey, J.M. Detection of single rhodamine-6g molecules in levitated microdroplets. Anal. Chem. 65, 2360-2365 (1993). https://doi.org/10.1021/ac00065a032
- Shera, E.B. et al. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553-557 (1990). https://doi.org/10.1016/0009-2614(90)85485-U
- Nie, S.M., Chiu, D.T. & Zare, R.N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018-1021 (1994). https://doi.org/10.1126/science.7973650
- Eigen, M. & Rigler, R. Sorting single molecules-application to diagnostics and evolutionary biotechnology. Proc. Natl Acad. Sci. U.S.A 91, 5740-5747 (1994). https://doi.org/10.1073/pnas.91.13.5740
- Castro, A. & Williams, J.G.K. Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA. Anal. Chem. 69, 3915-3920 (1997). https://doi.org/10.1021/ac970389h
- Wang, T.H., Peng, Y.H., Zhang, C.Y., Wong, P.K. & Ho, C.M. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. J. Am. Chem. Soc. 127, 5354-5359 (2005). https://doi.org/10.1021/ja042642i
- Zhang, C.Y., Chao, S.Y. & Wang, T.H. Comparative quantification of nucleic acids using single-molecule detection and molecular beacons. Analyst 130, 483-488 (2005). https://doi.org/10.1039/b415758c
- Wabuyele, M.B. et al. Approaching real-time molecular diagnostics: Single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J. Am. Chem. Soc. 125, 6937-6945 (2003). https://doi.org/10.1021/ja034716g
- Dabbousi, B.O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463-9475 (1997). https://doi.org/10.1021/jp971091y
- Leatherdale, C.A., Woo, W.K., Mikulec, F.V. & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619-7622 (2002). https://doi.org/10.1021/jp025698c
- Ute, R-G. et al. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763-775 (2008). https://doi.org/10.1038/nmeth.1248
- Zhang, C.-Y., Yeh, H.-C., Kuroki, M.T. & Wang, T.-H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826-831 (2005). https://doi.org/10.1038/nmat1508
- Zhang, C. & Johnson, L.W. Microfluidic control of fluorescence resonance energy transfer: Breaking the FRET limit, Angew. Chem. Int. Ed. 46, 3482-3485 (2007). https://doi.org/10.1002/anie.200604861
- Yang, L.-H., Ahn, D.J. & Koo, E. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization, Mater. Sci. Eng., C 69, 625-630 (2016). https://doi.org/10.1016/j.msec.2016.07.021
- Bae, W.K. & Lee, S. Single-Step Synthesis of Quantum Dots with Chemical Composition, Gradients. Chem. Mater. 20, 531-539 (2008). https://doi.org/10.1021/cm070754d
- Clapp, A.R. et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126, 301-310 (2004). https://doi.org/10.1021/ja037088b
Cited by
- Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications vol.14, pp.1, 2018, https://doi.org/10.1007/s13206-020-4111-9