Browse > Article
http://dx.doi.org/10.1007/s13206-018-2406-x

An Ultrasensitive FRET-based DNA Sensor via the Accumulated QD System Derivatized in the Nano-beads  

Yang, Lan-Hee (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET))
Ahn, Dong June (Department of Biomicrosystem Technology, Korea University)
Koo, Eunhae (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET))
Publication Information
BioChip Journal / v.12, no.4, 2018 , pp. 340-347 More about this Journal
Abstract
$F{\ddot{o}}rster$ resonance energy transfer (FRET) is extremely sensitive to the separation distance between the donor and the acceptor which is ideal for probing such biological phenomena. Also, FRET-based probes have been developing for detecting an unamplified, low-abundance of target DNA. Here we describe the development of FRET based DNA sensor based on an accumulated QD system for detecting KRAS G12D mutation which is the most common mutation in cancer. The accumulated QD system consists of the polystyrene beads which surface is modified with carboxyl modified QDs. The QDs are sandwich-hybridized with DNA of a capture probe, a reporter probe with Texas-red, and a target DNA by EDC-NHS coupling. Because the carboxyl modified QDs are located closely to each other in the accumulated QDs, these neighboring QDs are enough to transfer the energy to the acceptor dyes. Therefore the FRET factor in the bead system is enhancing by the additional increase of 29.2% as compared to that in a single QD system. These results suggest that the accumulated nanobead probe with conjugated QDs can be used as ultrasensitive DNA nanosensors detecting the mutation in the various cancers.
Keywords
FRET; QD; DNA sensor; Bead;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dabbousi, B.O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463-9475 (1997).   DOI
2 Leatherdale, C.A., Woo, W.K., Mikulec, F.V. & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619-7622 (2002).   DOI
3 Ute, R-G. et al. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763-775 (2008).   DOI
4 Zhang, C.-Y., Yeh, H.-C., Kuroki, M.T. & Wang, T.-H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826-831 (2005).   DOI
5 Zhang, C. & Johnson, L.W. Microfluidic control of fluorescence resonance energy transfer: Breaking the FRET limit, Angew. Chem. Int. Ed. 46, 3482-3485 (2007).   DOI
6 Eigen, M. & Rigler, R. Sorting single molecules-application to diagnostics and evolutionary biotechnology. Proc. Natl Acad. Sci. U.S.A 91, 5740-5747 (1994).   DOI
7 Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22 (2003).   DOI
8 Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517-531 (2008).   DOI
9 Vasan, N., Boyer, J.L. & Herbst, R.S. A RAS Renaissance: Emerging Targeted Therapies for KRAS-Mutated Non-Small Cell Lung Cancer. Clin. Cancer Res. 20, 3921-3930 (2014).   DOI
10 Riely, G.J., Marks, J. & Pao, W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc. 6, 201-205 (2009).   DOI
11 Patolsky, F. et al. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots. J. Am. Chem. Soc. 125, 13918-13919 (2003).   DOI
12 Medintzi, I.L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630-638 (2003).   DOI
13 Bakalova, R., Zhelev, Z., Ohba, H. & Baba, Y., Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences. J. Am. Chem. Soc. 127, 11328-11335 (2005).   DOI
14 Medintz, I.L. et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. U.S.A. 101, 9612-9617 (2004).   DOI
15 Clapp, A.R. et al. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. J. Am. Chem. Soc. 126, 301-310 (2004).   DOI
16 Zhang, C.Y., Yeh, H.C., Kuroki, M.T. & Wang, T.H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826-831 (2005).   DOI
17 Zhou, D. et al. Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem. Commun. 4807-4809 (2005).
18 Zhang, C. & Johnson, L.W. Quantum Dot-Based Fluorescence Resonance Energy Transfer with Improved FRET Efficiency in Capillary Flows. Anal. Chem. 78, 5532-5537 (2006).   DOI
19 Wargnier, R. et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett. 4, 451-457 (2004).   DOI
20 Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281-286 (2001).   DOI
21 Medintz, I.L., Trammell, S.A., Mattoussi, H. & Mauro, J.M. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126, 30-31 (2004).   DOI
22 Barnes, M.D., Ng, K.C., Whitten, W.B. & Ramsey, J.M. Detection of single rhodamine-6g molecules in levitated microdroplets. Anal. Chem. 65, 2360-2365 (1993).   DOI
23 Yang, L.-H., Ahn, D.J. & Koo, E. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization, Mater. Sci. Eng., C 69, 625-630 (2016).   DOI
24 Bae, W.K. & Lee, S. Single-Step Synthesis of Quantum Dots with Chemical Composition, Gradients. Chem. Mater. 20, 531-539 (2008).   DOI
25 Clapp, A.R. et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126, 301-310 (2004).   DOI
26 Pons, T., Medintz, I.L., Wang, X., English, D.S. & Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. J. Am. Chem. Soc. 128, 15324-15331 (2006).   DOI
27 Knemeyer, J.P., Marm'e, N. & Sauer, M. Probes for detection of specific DNA sequences at the single-molecule level. Anal. Chem. 72, 3717-3724 (2000).   DOI
28 Shera, E.B. et al. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553-557 (1990).   DOI
29 Nie, S.M., Chiu, D.T. & Zare, R.N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018-1021 (1994).   DOI
30 Castro, A. & Williams, J.G.K. Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA. Anal. Chem. 69, 3915-3920 (1997).   DOI
31 Wang, T.H., Peng, Y.H., Zhang, C.Y., Wong, P.K. & Ho, C.M. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. J. Am. Chem. Soc. 127, 5354-5359 (2005).   DOI
32 Zhang, C.Y., Chao, S.Y. & Wang, T.H. Comparative quantification of nucleic acids using single-molecule detection and molecular beacons. Analyst 130, 483-488 (2005).   DOI
33 Wabuyele, M.B. et al. Approaching real-time molecular diagnostics: Single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J. Am. Chem. Soc. 125, 6937-6945 (2003).   DOI