• Title/Summary/Keyword: DNA condensation

Search Result 161, Processing Time 0.027 seconds

Extracts of Caesalpina sappan L. Potentiate the Apoptosis of NIH3T3 Cells Exposed to Methymethane Sulfonate (알킬화제인 MMS를 선처리한 NIH3T3 세포에서 소목 추출물 의한 세포고사의 촉진)

  • 박종군;황성진;이정섭;전병훈;김원신
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.182-187
    • /
    • 2002
  • In this study we have investigated the effect of Caesalpina sappann L. extracts on the apoptosis in NIH3T3 cells exposed to methylmethan sulfonate (MMS), an alkylating agent. MTT assay study showed that Caesalpina sappan L. extracts potentiate the MMS-induced viability. Cell morphology studies, acridine orange (AO) staining, and DNA fragmentation analysis indicated that the postincubation of Caesalpina sappan L. extracts increase the nuclear condensation of MMS-induced apoptotosis. These results suggest that Caesalpina sampan L. extracts contain components potentiating MMS-induced apoptosis of NIH3T3 cells.

Abrin Induces HeLa Cell Apoptosis by Cytochrome c Release and Caspase Activation

  • Qu, Xiaoling;Qing, Liuting
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.445-453
    • /
    • 2004
  • We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.

Inhibitory Effects of Epigallocatechin Gallate on Apoptosis in Human Vascular Endothelial Cells (혈관내피세포의 세포사멸작용에 대한 (-)Epigallocatechin Gallate의 억제효과)

  • Choi, Yean-Jung;Choi, Jung-Suk;Lee, Se-Hee;Lee, Yong-Jin;Kang, Jung-Sook;Kang, Young-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.672-678
    • /
    • 2002
  • Oxidative stress contributes to cellular injury following clinical and experimental ischemia/reperfusion scenarios. Oxidative injury can induce cellular and nuclear damages that result in apoptotic cell death. We tested the hypothesis that the catechin flavonoid of (-)epigallocatechin gallate, a green tea polyphenol, inhibits hydrogen peroxide ($H_2O$$_2$)-induced apoptosis in human umbilical vein endothelial cells. The effect of apigenin, a flavone found in citrus fruits, on apoptosis parameters was also examined. A 30 min pulse treatment with 0.25 mM $H_2O$$_2$ decreased endothelial cell viability within 24 hrs by > 30% ; this was associated with nuclear condensation and biochemical DNA damage consistent with programmed cell death. In the 0.25 mM $H_2O$$_2$apoptosis model, 50${\mu}{\textrm}{m}$ (-)epigallocatechin gallate markedly increased cell viability with a reduction in the nuclear condensation and DNA fragmentation. In contrast, equimicromolar apigenin increased cell loss with intense DNA laddering, positive nick-end labeling and Hoechst 33258 staining. Thus, polyphenolic (-)epigallocatechin gallate, but not apigenin flavone, qualify as an antioxidant in apoptosis models caused by oxidative stress. Further work is necessary for elucidating the anti-apoptotic mechanisms of polyphenolic catechins.

Antiproliferative Effect of Opuntia humifusa Ethanol Extract on Human Carcinoma HT-29 Cells (천년초 선인장 줄기 에탄올 추출물의 HT-29 대장암 세포증식 저해효과)

  • Park, Soo Young;Kim, Young A;Ly, Sun Yung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1827-1834
    • /
    • 2014
  • Colon cancer is the third highest cause of death in Korea. Known dietary causes of colon cancer include a diet rich in fat and red meat as well as inadequate intake of dietary fiber, fruits, and vegetables. Therefore, recent research has focused on the anticancer effects of natural products. Opuntia humifusa is a type of prickly pear that is known to contain biologically active compounds that can be used in the treatment of diabetes mellitus, arteriosclerosis, and hyperglycemia. The aim of this study was to determine whether or not O. humifusa extract affects proliferation, cell death, and DNA fragmentation in human carcinoma HT-29 cells. O. humifusa is rich in carbohydrates, minerals (Mg, K, and Ca), and total phenolics. HT-29 cells were treated with extracts of O. humifusa at concentrations of 0, 0.25, 0.5, 1, and 2 mg/mL for 24 or 48 hours. O. humifusa extracts inhibited HT-29 cell growth in a dose-dependent manner. Hoechst 33342/PI double staining and Comet assay were performed to observe changes in nuclei of cancer cells undergoing cell death. The results of both tests showed that O. humifusa extract induced cell shrinkage, DNA fragmentation, and chromatin condensation dose-dependently in HT-29 cells. The results of this study suggest that O. humifusa extract inhibits the growth of HT-29 via induction of DNA fragmentation and chromatin condensation.

Effects of some edible plants on changing chromosomal morphology, and apoptosis of MCF-7 cell (식용식물들이 MCF-7 cell의 chromosome형태에 미치는 영향)

  • 정용자;곽수영
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.340-348
    • /
    • 2002
  • Equisetum arvense L. and Lactuca dentata Makino. var. Flaviflora Makino. of samples relatively showed anticancer effects on MCF-7 mammary gland adenocarcinoma cell. The most active plant among the samples was Capsicum annuum L. var angulosum Mill. We studied that MCF-7 cells were changing chromosomal morphology and apoptosis on these samples. Capsicum annuum L. var. angulosum Mill. of samples relatively showed good anticancer effects. The cells became vague after 2 days and then destroyed. The supernatant of the cells including medium was measured by UV absorbance. The results showed that Capsicum annuum L. var. angulosum Mill also exerted high level. We also used electrophoresis in order to observe apoptic characterization of DNA fragmentation. The cells treated with Capsicum annuum L. var. angulosum Mill showed the apoptotic characterization. The chromosome of the cells were observed on those samples. The cells treated with Capsicum annuum L. var. angulosum Mill among them were shown the fastest changes. The cells were aggregated and destroyed by treatment with some edible plants. Especially, the case of Capsicum annuum L. var. angulosum Mill, it led MCF-7 cell to apoptosis faster than others. And we can observe chromosomal changes and dispersion by PI staining. These results showed that each sample exerted anticancer effects on MCF-7 cells. Especially Capsicum annuum L. var. angulosum Miff exerted significant anticancer effects.

Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method (DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가)

  • Hwang, Eun-Seol;Seo, Sung Chul;Lee, Ju-Yeong;Ryu, Jung-min;Kwon, Myung-Hee;Chung, Hyen-Mi;Cho, Yong-Min;Lee, Jung-Sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.

DNA Condensation and Delivery in 293 Cells Using Low Molecular Weight Chitosan/gene Nano-complex (저분자량 키토산/유전자 나노콤플렉스 제조 및 이를 이용한 293 세포로의 전달)

  • Pang, Shi-Won;Jang, Yangsoo;Kim, Jung-Hyun;Kim, Woo-Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.313-317
    • /
    • 2005
  • Synthetic gene carriers such as poly-cationic polymers easily form complexes with plasmid DNA which contains negative charge. Chitosan is a polysaccharide that demonstrates much potential as a gene delivery system. The ability of depolymerized chitosan to condense DNA was determined using electrophoresis. Dynamic laser scattering and scanning electron microscopy were used to examine the size and the morphology of the chitosan/DNA complex. Parameters such as chitosan molecular weight and charge density influenced the complex size and the DNA amount condensed with chitosan. The cell viabilities in the presence of chitosan ranged between 84-108% of the control in all experiments. Gene expression efficacy using chitosan/DNA complex was enhanced in 293 cells relative to that using naked DNA, although it was lower than that using lipofecamine. Transfection efficacy using low molecular weight chitosan (Mw=8,517) was higher than those of the control and the other chitosan (MW=4,078). The low molecular weight chitosan (MW=8,517) with a high charge density (18.32 mV) fulfilled the requirements for a suitable model gene delivery system with respect to the condensing ability of DNA, complex formation, and transfection efficacy.

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

New Unsymmetric Dinuclear Copper(II) Complexes of Trans-disubstituted Cyclam Derivatives: Spectral, Electrochemical, Magnetic, Catalytic, Antimicrobial, DNA Binding and Cleavage Studies

  • Prabu, R.;Vijayaraj, A.;Suresh, R.;Jagadish, L.;Kaviyarasan, V.;Narayanan, V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1669-1678
    • /
    • 2011
  • Six new binuclear copper(II) complexes have been prepared by template condensation of the dialdehydes 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-a) and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-b) with appropriate aliphatic diamines, and copper(II) perchlorate. The structural features of the complexes have been confirmed by elemental analysis, IR, UV-vis and mass spectra etc. The electrochemical behavior of all the copper(II) complexes show two irreversible one electron reduction process. The room temperature magnetic moment studies depict the presence of an antiferromagnetic interaction in the binuclear complexes. The catechol oxidation and hydrolysis of 4-nitrophenylphosphate were carried out by using the complexes as catalyst. The antimicrobial screening data show good results. The binding of the complexes to calf thymus DNA (CT DNA) has been investigated with absorption and emission spectroscopy. The complex [$Cu_2L^{1a}$] displays significant cleavage property of circular plasmid pBR322 DNA in to linear form. Spectral, electrochemical, magnetic and catalytic studies support the distortion of the copper ion geometry that arises as the macrocyclic ring size increases.

Synthesis, Characterization and DNA Interaction Studies of (N,N'-Bis(5-phenylazosalicylaldehyde)-ethylenediamine) Cobalt(II) Complex

  • Sohrabi, Nasrin;Rasouli, Nahid;Kamkar, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2523-2528
    • /
    • 2014
  • In the present study, at first, azo Schiff base ligand of (N,N'-bis(5-phenylazosalicylaldehyde)-ethylenediamine) ($H_2L$) has been synthesized by condensation reaction of 5-phenylazosalicylaldehyde and ethylenediamine in 2:1 molar ratio, respectively. Then, its cobalt complex (CoL) was synthesized by reaction of $Co(OAc)_2{\cdot}4H_2O$ with ligand ($H_2L$) in 1:1 molar ratio in ethanol solvent. This ligand and its cobalt complex containing azo functional groups were characterized using elemental analysis, $^1H$-NMR, UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and CoL complex was investigated in 10 mM Tris/HCl buffer solution, pH = 7 using UV-vis absorption, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of CoL complex with ct-DNA was found to be $(2.4{\pm}0.2){\times}10^4M^{-1}$. The thermodynamic parameters were calculated by van't Hoff equation.The enthalpy and entropy changes were $5753.94{\pm}172.66kcal/mol$ and $43.93{\pm}1.18cal/mol{\cdot}K$ at $25^{\circ}C$, respectively. Thermal denaturation experiments represent the increasing of melting temperature of ct-DNA (about $0.93^{\circ}C$) due to binding of CoL complex. The results indicate that the process is entropy-driven and suggest that hydrophobic interactions are the main driving force for the complex formation.