• Title/Summary/Keyword: DNA comet assay

Search Result 300, Processing Time 0.025 seconds

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIII) - Single Cell Gel Electrophoresis of Benzoyl Chloride, 2-Propyn-1-ol, and 2-Phenoxyethanol in Chinese Hamster lung Fibroblast -

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.79-84
    • /
    • 2004
  • Three synthetic chemicals, benzoyl chloride, 2-propyn-l-ol, and 2-phenoxy ethanol were selected for genotoxicity testing, based on production quantity and available genotoxic data. In our previous report, benzoyl chloride induced chromosomal aberrations in Chinese hamster lung (CHL) fibroblast in vitro with and without metabolic activation, while 2-propyn-l-ol and 2-phenoxy ethanol induced only with metabolic activation. To compare the genotoxicity of chromosome aberration assay, the single cell gel electrophoresis (comet) assay subjected using CHL cells. As a result, statistically significant differences of tail moment values of benzoyl chloride, 2-propyn-1-ol, and 2-phenoxy ethanol were observed compared with control values on almost all concentrations with S9 or without S9 metabolic activation system. This results suggest that genotoxic results of the comet assay and the chromosome aberration assay show correlationship of genotoxicity in the CHL fibroblast. In summary, the positive result of chromosome aberration of benzoyl chloride, 2-propyn-l-ol, and 2-phenoxy ethanol was also induced DNA damages in comet assay with same cell line. Consequently, comet assay will be useful and more accurate tool to detect and to confirm the genotoxicity especially DNA damages in CHL fibroblast.

  • PDF

Protective Effect of Electrolyzed Reduced Water on the Paraquat-induced Oxidative Damage of Human Lymphocyte DNA (Paraquat에 의한 사람 임파구 DNA 손상에 대한 환원전리수의 보호효과)

  • Park, Eun-Ju;Ryoo, Kun-Kul;Lee, Yoon-Bae;Lee, Jong-Kwon;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Electrolyzed reduced water (ERW), showing extremely negative oxidation-reduction potential, was used to investigate the effects of paraquat-induced damages on DNA from human lymphocyte. The effect of ERW on paraquat-induced oxidative DNA damage in human lymphocytes was evaluated by Comet assay (single-cell gel electrophoresis) quantified as percentage fluorescence in tail. Comet assay has been used widely to assess the level of the DNA damage in individual cells. Lymphocytes were oxidatively challenged with various concentrations of paraquat for 30 min at $37^{\circ}C$, and were then treated with electrolyzed reduced water for 30 min. The oxidative DNA damage by paraquat, as indicated by the fluorescent tail in DNA, increased in a dose-dependent manner. However, oxidative damage of the DNA was almost completely prevented upon treatment with electrolyzed reduced water.

Protective Effect of Yellow-Green Vegetable Juices on DNA Damage in Chinese Hamster Lung Cell Using Comet Assay (Comet Assay를 이용한 케일, 명일엽, 당근, 돌미나리 녹즙의 Chinese Hamster Lung 세포 DNA 손상 보호 효과)

  • 전은재;김정신;박유경;김태석;강명희
    • Journal of Nutrition and Health
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • The present study was attempted to investigate the antioxidant capacity of popular yellow-green vegetable juices (kale, Angelica keishei, carrot, small water dropwort) and to investigate the effect of vegetable juices on protecting oxidative damage to DNA in cultured Chinese hamster lung (CHL) cells. Antioxidant capacity was analyzed by TRAP assay (Total radical-trapping antioxidant potential). Cellular DNA dmamage was measured by SCGE (single-cell gel electrophoresis, also known as comet assay. Cells incubated in medium with PBS (negative control) or with various concentration of the freeze dried green juices (25, 50, 100, 250 $\mu\textrm{g}$/$m\ell$) resuspended in PBS were treated with $H_2O_2$ (200 ${\mu}{\textrm}{m}$) as an oxidative stimulus for 5 min at 4$^{\circ}C$. The physiological function of each vegetable juice on oxidative DNA damage was analyzed and expressed as tail moment (tail length X percentage migrated DNA in tail) . Kale juice had the highest TRAP value suggesting that kale has the highest antioxidant capacity followed by Angelica keishei, small water dropwort and carrot. Cells treated with $H_2O_2$ had extensive DNA damage compared with cells treated with PBS or pre-treated with vegetable juice extracts. All green juices inhibited $H_2O_2$-induced DNA damage with kale being the most effective juice among the tested juices. These results indicate that green juice supplementation to CHL cells followed by oxidative stimulus inhibited damage to cellular DNA, supporting a protective effect against oxidative damage induced by reactive oxygen species. (Korean J Nutrition 36(1) : 24-31, 2003)

DNA Damage Effect of Botanical Insecticides Using Chinese Hamster Lung Cells

  • Kim, Areumnuri;Jeong, Mihye;Park, Kyung-Hun;Chon, Kyongmi;Cho, Namjun;Paik, Min Kyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.350-354
    • /
    • 2015
  • BACKGROUND: Botanical insecticides, especially Azadirachta Indica extract (AIE) and Sophorae radix extract (SRE) are widely used in Agriculture field. In our previous studies on genotoxicity test of AIE and SRE samples, a suspicious clastogenic properties was shown. Herein, we investigated the DNA damage effect of these botanical insecticide samples through the in vitro comet assay. METHODS AND RESULTS: Chinese hamster lung (CHL) fibroblast cell line was used, and methyl methanesulphonate was as positive control. Respective two samples of AIE and SRE were evaluated using Single Cell Gel Electrophoresis (Comet) assay and measured as the Olive tail moment (OTM). Results from this study indicated that all tested AIE and SRE samples did not show DNA damage in comet assay using CHL cells, compared with control. CONCLUSION: AIE and SRE samples used in this study were not cause genetic toxicity and are suitable for use as organic materials.

Antioxidative properties of traditional herbal medicines and the application of comet assay on antioxidative study

  • Szeto, Yim Tong;Wong, Kam Shing;Kalle, Wouter;Pak, Sok Cheon
    • CELLMED
    • /
    • v.3 no.3
    • /
    • pp.22.1-22.10
    • /
    • 2013
  • Traditional Chinese medicine (TCM) in single herb or formula prescription has been used for thousands of years. Many of them possess antioxidant activity and the activity may contribute the therapeutic effect. This paper would review the relationship of traditional herbal medicine and antioxidant with particular reference to ginseng. This medicinal herb has been used worldwide with extensive tonic effect. The comet assay, a technique for DNA protecting and damaging investigation would be introduced and the application of comet assay on TCM would be discussed.

Changes of DNA fragmentation by Irradiation Doses and Storage in Gamma-irradiated Meats and Poultry (감마선 조사 육류, 가금류에서 저장전과 후의 조사선량에 따른 DNA fragmentation의 변화)

  • Lee, Hye-Jin;Kim, Sang-Mi;Park, Yoo-Kyoung;Yang, Jae-Seung;Kang, Myung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.2
    • /
    • pp.129-138
    • /
    • 2004
  • The changes in DNA damage were investigated during storage after irradiation. Beef, pork and chicken were irradiated at 1.0, 3.0 and 5.0 kGy and stored for 6 months at $-20^{\circ}C$. The comet assay was applied to the sample muscles at the beginning of irradiation and at the end of storage. Muscles were isolated, sliced, and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were electrophoresed for 2 min. and then stained. DNA fragmentation in tissues caused by irradiation was quantified as tail length and tail moment (tail length ${\times}$ % DNA in tail) by comet image analyzing system. Right after irradiation, the differences in tail length between unirradiated and irradiated muscles were significant(p<0.05) in beef, pork and chicken. With increasing the increasing doses, statistically significant longer extension of the DNA from the nucleus toward anode was observed. Similarly even 6 months after irradiation, all the irradiated muscles significantly showed longer tail length than the unirradiated controls. The results represented as tail moment showed similar tendency to those of tail length, but the latter parameter was more sensitive than the former. These results indicate that the comet assay could be one of the simple methods of detecting irradiated muscles. Moreover, this method suggest that using comet assay, we were able to detect DNA damage differences even after 6 months after irradiation.

Antimutagenic Effects of Ginsenoside Rb$_1$, Rg$_1$ in the CHO-K1 Cells by Benzo[a]pyrene with Chromosomal Aberration Test and Comet Assay

  • Kim, Jong-Kyu;Kim, Soo-Jin;Rim, Kyung-Taek;Cho, Hae-Won;Kim, Hyeon-Yeong;Yang, Jeong-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.126-132
    • /
    • 2009
  • The usage and types of chemicals are advancing, specializing, large-scaled increasing, and new chemical exposed workers are concerning to occupational disease. The generation of reactive oxygen in the body from carcinogen, mutation and DNA damage in cancer is protected by natural antioxidants (phytochemicals) with antimutagenic effect. There were many reports of ginsenoside Rb$_1$, Rg$_1$ grievances of the genetic mutation to suppress the effect confirm the genetic toxicity test with chromosomal aberration test and the Comet (SCGE) assay confirmed the suppression effect occurring chromosomal DNA damage. We had wanted to evaluate the compatibility and sensitivity between the chromosomal aberration (CA) test and the Comet assay. We used the CA test and Comet assay to evaluate the anti-genotoxicity of ginsenoside Rb$_1$ and Rg$_1$, in CHO-K1 (Chinese hamster ovary fibroblast) cell in vitro, composed negative control (solvent), positive control (benzo[a]pyrene), test group (carcinogen+variety concentration of ginsenoside) group. The positive control was benzo[a]pyrene (50 $\mu$M), well-known carcinogen, and the negative control was the 1 % DMSO solvent. The test group was a variety concentration of ginsenoside Rb$_1$, Rg$_1$ with 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1%, 10%. In chromo-somal aberration test, we measured the number of cells with abnormally structured chromosome. In Comet assay, the Olive tail moment (OTM) and Tail length (TL) values were measured. The ratio of cell proliferation was increased 8.3% in 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1%, 10% Rb$_1$ treated groups, and increased 10.4% in 10$^{-10}$%, 10$^{-8}$%, 10$^{-6}$%, 10$^{-4}$%, 10$^{-2}$%, 1% Rg$_1$ treated groups. In the CA test, the number of chromosomal aberration was decreased all the Rb$_1$ and Rg$_1$ treated groups. In the Comet assay, the OTM values were decreased in all the Rb$_1$ and Rg$_1$ treated groups. To evaluate the compatibility between CA and Comet assay, we compared the reducing ratio of chromosomal abnormalities with its OTM values, it was identified the antimutagenicity of ginsenoside, but it was more sensitive the CA test than the Comet assay. Ginsenoside Rb$_1$ and Rg$_1$ significantly decrease the number of cells with chromosomal aberration, and decrease the extent of DNA migration. Therefore, ginsenoside Rb$_1$, Rg$_1$ are thought as an antioxidant phytochemicals to protect mutagenicity. The in vitro Comet assay seems to be less sensitive than the in vitro chromosomal aberration test.

EVALUATION OF THE GENOTOXICITY OF FERRIC SULFATE BY COMET ASSAY (Comet assay를 이용한 Ferric Sulfate의 유전자 독성에 대한 연구)

  • Kang, Ho-Seung;Kim, Shin;Jeong, Tae-Sung;Park, Hae-Ryoun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.77-84
    • /
    • 2000
  • Although ferric sulfate has been proposed as an alternative to formocresol in pulpotomy treatment in primary teeth, it has been given little concern regarding its cytotoxicity and mutagenicity. In the present study, we assessed the in vitro genotoxic effect of a ferric sulfate on human gingival fibroblast cell line (HGF-1). DNA damage was evaluated using comet assay (single cell alkaline gel electrophoresis) and obtained the results as follows: 1. A dose-response relationship was found between ferric sulfate concentrations (0 to 5mM) and DNA damages. 2. Above the concentration of 0.1mM, DNA damage was significantly increased than those of the control (p<0.05). 2. At the fixed concentration of 0.05mM, no significant difference was found between exposure time and DNA damage. These findings suggest that ferric sulfate as a pulpotomy agent can induce DNA damage in human gingival fibroblasts.

  • PDF