• Title/Summary/Keyword: DNA barcode analysis

Search Result 47, Processing Time 0.025 seconds

Development of Molecular Marker for the authentication of Patriniae Radix by the analysis of DNA barcodes (DNA 바코드 분석을 통한 패장 기원종 감별용 분자 마커 개발)

  • Kim, Wook Jin;Ji, Yunui;Lee, Young Mi;Kang, Young Min;Choi, Goya;Kim, Ho Kyoung;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.45-53
    • /
    • 2014
  • Objectives : Due to the morphological similarity of in the roots of herbal medicine, the official herbal medicine is very difficult to authenticate between the original plants of Patriniae Radix and two adulterant Patrinia species. Therefore, we introduced DNA barcode analysis to establish a powerful tool for the authentication of Patriniae Radix from its adulterants. Methods : To analyze DNA barcode regions, genomic DNA was extracted from twenty-nine specimens of Patrinia scabiosaefolia, Patrinia villosa, Patrinia saniculifolia, and Patrinia rupestris, and internal transcribed spacer 2(ITS2), matK and rbcL genes were amplified. For identification of species specific sequences, a comparative analysis was performed by the ClastalW based on entire sequences of ITS2, matK and rbcL genes, respectively. Results : In comparison of three DNA barcode sequences, we identified 22, 22, and 12 species-specific nucleotides enough to distinguish each four species from ITS2, matK and rbcL gene, respectively. The sequence differences at the corresponding positions were available genetic marker nucleotides to discriminate the correct species among analyzed four species. These results indicated that comparative analysis of ITS2, matK and rbcL genes were useful genetic markers to authenticate Patriniae Radix. Conclusions : The marker nucleotides enough to distinguish P. scabiosaefolia, P. villosa, P. saniculifolia, and P. rupestris, were obtained at 22 SNP marker nucleotides from ITS2 and matK DNA barcode sequences, but they were confirmed at 12 SNP marker nucleotides from rbcL. These differences could be used to authenticate Patriniae Radix from its adulterants as well as discriminating each four species.

Estimation of micro-biota in the Upo wetland using eukaryotic barcode molecular markers

  • Park, Hyun-Chul;Bae, Chang-Hwan;Jun, Ju-Min;Kwak, Myoung-Hai
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.323-331
    • /
    • 2011
  • Biodiversity and the community composition of micro-eukaryotic organisms were investigated in the Upo wetland in Korea using molecular analysis. Molecular identification was performed using cytochrome oxidase I (COI) and small subunit ribosomal DNA (SSU rDNA). The genomic DNA was isolated directly from soil samples. The COI and SSU rDNA regions were amplified using universal primers and then sequenced after cloning. In a similarity search of the obtained sequences with BLAST in the Genbank database, the closely related sequences from NCBI were used to identify the amplified sequences. A total of six eukaryotic groups (Annelida, Arthropoda, Rotifera, Chlorophyta, Bacillariophyta, and Stramenopiles) with COI and six groups (Annelida, Arthropoda, Rotifera, Alveolata, Fungi, and Apicomplexa) with SSU rDNA genes were determined in the Upo wetland. Among 38 taxa in 20 genera, which are closely related to the amplified sequences, 10 genera (50%) were newly reported in Korea and five genera (25%) were shown to be distributed in the Upo wetland. This approach is applicable to the development of an efficient method for monitoring biodiversity without traditional taxonomic processes and is expected to produce more accurate results in depositing molecular barcode data in the near future.

DNA barcode analysis for conservation of an endangered species, Aporia crataegi (Lepidoptera, Pieridae) in Korea (멸종위기종, 상제나비(나비목, 흰나비과)의 보전을 위한 DNA 바코드 특성 분석)

  • Park, Hae Chul;Han, Taeman;Kang, Tae Wha;Yi, Dae-Am;Kim, Sung-Soo;Lee, Young Bo
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.201-206
    • /
    • 2013
  • Aporia crataegi, an Korean endangered species, was first analyzed for DNA barcode sequences based on 28-year-old dried specimens and compared barcode characters with 36 individuals of ten geographical populations of Eurasia. They were revealed to consist of five different haplotypes. Among them, haplotype I was mostly extensive and high frequency with 75%. The south Korean individuals were confirmed to be belonging to haplotype I and have no genetic isolation on COI gene. By these results, we consider that selection of the identical haplotype from other geographical populations may be a requirement prior to performing for conservation and restoration of the Korean population. We also propose to analyse the additional genetic markers in order to understand a more accurate genetic structures between haplotypes of this species.

DNA barcoding analysis of Rosase Multiflorae Fructus and its adulterants (영실(營實)과 그 위품의 유전자 감별)

  • Doh, Eui jeong;Shin, Sangmun;Lee, Guemsan
    • The Korea Journal of Herbology
    • /
    • v.34 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives : Rosae Multiflorae Fructus is a traditional medicine derived from the fruit of Rosa multiflora Thunb. a member of the Rosaceae family. Even though it has a single origin, the possibility of adulterants has always existed. In fact, we had discovered suspicious commercial samples of Rosae Multiflorae Fructus, imported from China. Methods : To define the taxonomic origin of Rosae Multiflorae Fructus and its adulterants, DNA barcode analysis of the internal transcribed spacer, trnL-F intergenic spacer, and psbA-trnH sequences was carried out. These DNA barcode sequences from the correct origin of Rosae Multiflorae Fructus were analyzed and compared with those of other samples from genus Rosa used as medicinal herbs. Results : The analyses of the three DNA barcode sequences efficiently distinguished Rosae Multiflorae Fructus from six other species in genus Rosa and also separated each species used in this study. According to the DNA barcoding results, none of the suspicious commercial samples were Rosae Multiflorae Fructus. RMF09 was identified as Rosa acicularis, whereas RMF10 and RMF11 were identified as Rosa davurica and Rosa rugosa, respectively. These results corroborated the existence of adulterants of Rosae Multiflorae Fructus. Conclusions : Our research provides useful information that could be used as a criterion for distinguishing between Rosae Multiflorae Fructus and its adulterants. These results will help in the prevention of adulteration and also suggest effective methods for verifying the origin of commercial herbal medicines derived from genus Rosa.

Novel High-Throughput DNA Part Characterization Technique for Synthetic Biology

  • Bak, Seong-Kun;Seong, Wonjae;Rha, Eugene;Lee, Hyewon;Kim, Seong Keun;Kwon, Kil Koang;Kim, Haseong;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1026-1033
    • /
    • 2022
  • This study presents a novel DNA part characterization technique that increases throughput by combinatorial DNA part assembly, solid plate-based quantitative fluorescence assay for phenotyping, and barcode tagging-based long-read sequencing for genotyping. We confirmed that the fluorescence intensities of colonies on plates were comparable to fluorescence at the single-cell level from a high-end, flow-cytometry device and developed a high-throughput image analysis pipeline. The barcode tagging-based long-read sequencing technique enabled rapid identification of all DNA parts and their combinations with a single sequencing experiment. Using our techniques, forty-four DNA parts (21 promoters and 23 RBSs) were successfully characterized in 72 h without any automated equipment. We anticipate that this high-throughput and easy-to-use part characterization technique will contribute to increasing part diversity and be useful for building genetic circuits and metabolic pathways in synthetic biology.

Morphological Description, DNA Barcoding, and Taxonomic Review of Five Nudibranch Species (Gastropoda) from South Korea

  • Jina Park;Damin Lee;Eggy Triana Putri;Haelim Kil;Joong-Ki Park
    • Animal Systematics, Evolution and Diversity
    • /
    • v.39 no.3
    • /
    • pp.99-113
    • /
    • 2023
  • The nudibranch is one of the most colorful gastropod species found in oceans worldwide. Unlike many other gastropod groups, the nudibranch loses an external shell in the adult stage, but instead develops various chemical defense systems. More than 2,500 nudibranch species have been reported worldwide, and 73 species are currently recorded in Korean waters. In this study, we present morphological descriptions, DNA barcode information of mtDNA cox1 sequence, and taxonomic review for five nudibranch species: Apata pricei (MacFarland, 1966), Doto rosacea Baba, 1949, Janolus toyamensis Baba and Abe, 1970, Polycera abei (Baba, 1960), and Trinchesia sibogae (Bergh, 1905). Of these, we also provide in-depth discussion of taxonomic issue of A. pricei that was previously subdivided into two subspecies, A. pricei pricei and A. pricei komandorica. Our morphological examination and molecular analyses of the mtDNA cox1 sequences indicate that these two subspecies are not taxonomically warranted. The phylogenetic information for the other nudibranch species from mtDNA cox1 sequence analysis is also included, providing a molecular basis for species identification and inferring their local phylogenies within each of the species groups discussed herein.

Phylogenetic analysis of Viburnum (Adoxaceae) in Korea using DNA sequences

  • CHOI, Yun Gyeong;YOUM, Jung Won;LIM, Chae Eun;OH, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.3
    • /
    • pp.206-217
    • /
    • 2018
  • The nucleotide sequences of the chloroplast rbcL, matK, and psbA-trnH and nuclear internal transcribed spacer (ITS) regions were determined from all species of Viburnum in Korea with multiple accessions to reconstruct the phylogeny and to evaluate the utility of the DNA sequences as DNA barcodes. The results of phylogenetic analyses of the cpDNA and ITS data are consistent with the findings of previous studies of Viburnum. Four morphologically closely related species, V. dilatatum, V. erosum, V. japonicum, and V. wrightii, were included in a strongly supported sister clade of V. koreanum and V. opulus. Viburnum odoratissimum is suggested to be sister to the V. dilatatum/V. koreanum clade in the cpDNA data, while V. odoratissimum is a sister to V. furcatum in the ITS data. Viburnum burejaeticum and V. carlesii are strongly supported as monophyletic. Our analyses of DNA barcode regions from multiple accessions of the species of Viburnum in Korea confirm that six out of ten species in Korea can be discriminated at the species level. The V. dilatatum complex can be separated from the remaining species according to molecular data, but the resolution power to differentiate a species within the complex is weak. This study suggests that regional DNA barcodes are useful for molecular species identification in the case of Viburnum when flowering or fruiting materials are not available.

Identification of Marker Nucleotides for the Molecular Authentication of Araliae Continentalis Radix Based on the Analysis of Universal DNA Barcode, matK and rbcL, Sequences (범용성 DNA 바코드(matK, rbcL) 분석을 통한 독활(獨活) 유전자 감별용 Marker Nucleotide 발굴)

  • Kim, Wook Jin;Yang, Sungyu;Choi, Goya;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.15-23
    • /
    • 2016
  • Objectives : Araliae Continentalis Radix and Angelicae Pubescentis Radix have been used as the same medicinal name Korean and Chinese traditional medicines, respectively. The authentic Araliae Continentalis Radix is described only the root of Aralia continentalis in the Korean Pharmarcopoeia. However, the dried root of Angelica biserrata, Levisticum officinale, or Heracleum moellendorffii also has been distributed adulterants of Araliae Continentalis Radix. To develop a reliable method for identifying Araliae Continentalis Radix from adulterants, we carried out the analyses of universal DNA barcode sequences.Methods : Four plants species were collected from different habitate and nucleotide sequences of matK and rbcL were analyzed. The species-specific sequences and phylogenetic relationship were estimated using entire sequences of two DNA barcodes, respectively.Results : In comparative analysis of matK sequences, we were identified 104 positions of marker nucleotide for Ar. continentalis, 3 for An. biserrata, 4 for L. officinale and 8 for H. moellendorffii enough to distinguish individual species, respectively. Furthermore, we obtained marker nucleotides in rbcL at 42 positions for Ar. continentalis, 5 for An. biserrata and 2 for H. moellendorffii, but not for L. officinale. The phylogenetic tree of matK and rbcL were showed that all samples were clustered into four groups constituting homogeneous clades within the species.Conclusions : We confirmed that species-specific marker nucleotides of matK sequence provides distinct genetic information enough to identify four species. Therefore, we suggest that matK gene is useful DNA barcode for discriminating authentic Araliae Continentalis Radix from inauthentic adulterants.

Development of SCAR marker for the rapid assay of Paeng-hwal based on CO1 DNA barcode sequences (CO1 DNA 바코드 염기서열 기반 팽활(蟛螖) 신속 감별용 SCAR marker 개발)

  • Wook Jin Kim;Sumin Noh;Goya Choi;Woojong Jang;Byeong Cheol Moon
    • The Korea Journal of Herbology
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • Objectives : Paeng-hwal is described as an insect herbal medicine used for digestive diseases in the Dong-ui-bo-gam. The origin of this herbal medicine is limited to several small crabs, such as Helice tridens. These crab species cohabitat in the same environment and share similar morphological characteristics, making it very difficult to distinguish and collect the individual species for use in dietary supplements or herbal medicines. This study was conducted to develop a genetic identification tool for discriminating among these closely related small crab species. Methods : CO1 DNA barcode regions of 15 samples from 6 species of small crabs were analyzed to obtain the individual sequences. To identify the correct species, comparative analyses were carried out using the database of the NCBI GenBank and the NIBR. SCAR primers were designed to develop simple and rapid assay methods using inter-species specific sequences. Optimal SCAR assay conditions were established through gradient PCR, and the limit of detection (LOD) was determined. Results : Six species of small crabs (Helicana tridens, Macrophthalmus abbreviatus, Helicana tientsinensis, Helicana wuana, Chiromantes dehaani, and Hemigrapsus penicillatus), which are distributed as Paeng-hwal, were identified through CO1 sequences analysis. We also developed SCAR markers to distinguish between six small crabs at the species level. Furthermore, we established the optimal PCR assay methods and the LOD of each individual species. Conclusions : The rapid and simple SCAR-PCR assay methods were developed to identify the species and control the quality of herbal medicines for Paeng-hwal based on the genetic analyses of CO1 DNA barcodes.

Study on Molecular Phylogenetics of Korean Arisaema Species Based on Universal DNA Barcodes (범용성 DNA 바코드 분석 기반 한국산 천남성속(Arisaema) 식물의 분자계통학적 연구)

  • Noh, Pureum;Han, Kyeongsuk;Kim, Wook Jin;Yang, Sungyu;Choi, Goya;Ko, Sung Chul;Moon, Byeong Cheol
    • Korean Journal of Plant Resources
    • /
    • v.31 no.1
    • /
    • pp.37-51
    • /
    • 2018
  • Molecular phylogenetic analysis was conducted to evaluate the taxonomic relationships of genus Arisaema L. distributed in Korea and the molecular phylogenetic characteristics of three authentic Arisaema species for the herbal medicine Arisaematis Rhizoma (the rhizomes of A. amurense, A. heterophyllum, and A. erubescens). The sequences of three DNA barcodes (rDNA-ITS, matK, and rbcL) were analyzed using 50 samples of nine taxa consisted of eight Korean and one Chinese Arisaema with one outgroup (Dracunculus vulgaris). Both individual and combined phylogenetic analyses of three DNA barcode sequences revealed that the treated nine taxa are independently classified into six distinct clades (Clade I, A. amurense f. amurense and A. amurense f. serratum; Clade II, A. serratum and A. takesimense; Clade III, A. ringens; Clade IV, A. erubescens; Clade V, A. heterophyllum; Clade VI, A. thunbergii subsp. thunbergii and A. thunbergii subsp. geomundoense). These six clades were reasonably divided into three individual sections, Pedatisecta, Sinarisaema, and Tortuosa. Futhermore, the results of comparative DNA barcode sequences analyses provided a significant information for the taxonomic reconsideration of Arisaema L. at the specific and intraspecific level. However, we could not confirm the taxonomic characteristics or identity among the three authentic medicinal species through the molecular phylogenetic analyses of genus Arisaema L. for Arisaematis Rhizoma.