• Title/Summary/Keyword: DNA analysis

Search Result 6,628, Processing Time 0.036 seconds

Determination of Active Site in PRD1 DNA Polymerase by Site-specific Mutagenesis (Site-specific Mutagenesis에 의한 PRD1 DNA Polymerase의 활성부위 결정)

  • 황정원;정구홍
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.209-214
    • /
    • 1991
  • The PRD1 DNA polymerase is a small multi-functional enzyme containing conserved amino acid sequences shared by family B DNA polymerases. Thus the PRD1 DNA polymerase provides an useful model system with which to study structure-functional relationships of DNA polymerase molecules. In order to investigate the functional and structural roles of the highly conserved amino acid sequences, we have introduced three mutations into a conserved amino acid of the PRD1 DNA polymerase. Genetic complememtation study indicated that each mutation inactivated DNA polymerase catalytic activity.

  • PDF

Forensic STR Analysis of Mixed Chimerism after Allogeneic Bone Marrow Transplantation

  • Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.193-196
    • /
    • 2010
  • Multiplex PCR-based short tandem repeat (STR) analysis is considered as a good tool for monitoring bone marrow engraftment after sex-mismatched allogeneic transplantation and provides a sensitive and accurate assessment of the contribution of both donor and/or recipient cells in post-transplantation specimens. Forensic STR analysis and quantitative real time PCR are used to determine the proportion of donor versus recipient each contained within the total DNA. The STR markers were co-amplified in a single reaction by using commercial $PowerPlex^{(R)}$ 16 system and $AmpFISTR^{(R)}$ $Identifiler^{(R)}$ / $Yfiler^{(R)}$ PCR amplification kits. Separation of the PCR products and fluorescence detection were performed by ABI $PRIS^{(R)}$ 3100 Genetic Analyzer with capillary electrophoresis. The $GeneMapper^{TM}$ ID software were used for size calling and analysis of STR profiles. Extracted DNA was quantified by the $Quantifiler^{TM}$ Human DNA / Y Human Male DNA Quantification Kit The intent of this study was to analyze the ratio of donor versus recipient cells in the post-transplant peripheral blood, spleen, lung and kidney specimens. Specimens were taken from the traffic accident male victim who had been engrafted from bone marrow female donor. Blood and spleen specimens displayed female donor DNA profile. Kidney specimen showed male recipient DNA profile. Interestingly, lung tissue showed mixed profiles. The findings of this study indicate that the forensic STR analysis using fluorescence labeling PCR combined with capillary electrophoresis is quick and reliable enough to assess the ratio of donor versus recipient cells and to monitor the mixed chimeric patterns.

MALDI-TOF Analysis of Binding between DNA and Peptides Containing Lysine and Tryptophan

  • Lee, Seonghyun;Choe, Sojeong;Oh, Yeeun;Jo, Kyubong
    • Mass Spectrometry Letters
    • /
    • v.6 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • Here, we demonstrate the use of MALDI-TOF as a fast and simple analytical approach to evaluate the DNA-binding capability of various peptides. Specifically, by varying the amino acid sequence of the peptides consisting of lysine (K) and tryptophan (W), we identified peptides with strong DNA-binding capabilities using MALDI-TOF. Mass spectrometric analysis reveals an interesting novel finding that lysine residues show sequence selective preference, which used to be considered as mediator of electrostatic interactions with DNA phosphate backbones. Moreover, tryptophan residues show higher affinity to DNA than lysine residues. Since there are numerous possible combinations to make peptide oligomers, it is valuable to introduce a simple and reliable analytical approach in order to quickly identify DNA-binding peptides.

Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis (엽록체 DNA 바코드 분석을 통한 한국산 두릅나무과 식물 14종의 유연관계 분석)

  • Hwang, Hwan Su;Choi, Yong Eui
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.82-90
    • /
    • 2016
  • Most Araliaceae plant species distributed in Korea are economically important because of their high medicinal values. This study was conducted to develop barcode markers from sequence analysis of chloroplast DNA in 14 taxa of Araliaceae species grown in South Korea. Sequencing of seven chloroplast DNA regions was performed to establish the DNA barcode markers, as suggested by the Consortium for the Barcode of Life (CBOL). From the sequence analysis of chloroplast DNA, we identified specific sequences and nucleotides that allowed us to discriminate among each other 14 Korean Araliaceae species. The sequence in the region of psbA-trnH revealed the most frequent DNA indels and substitutions of all 7 regions studied. This psbA-trnH marker alone can discriminate among all 14 species. There are no differences between Korean and Chinese Panax ginseng in all seven sequenced chloroplast DNA regions. A phylogenetic tree constructed using the seven chloroplast DNA regions revealed that Tetrapanax papyriferus should be classified as an independent clade. The Aralia and Panax genera showed a close phylogenetic relationship. Five species in the Eleutherococcus genus were more closely related to Kalopanax septemlobus than to any Panax species.

Analysis and evaluation of morphological and molecular polymorphism in the hybridization of Elaeagnus ×maritima and E. ×submacrophylla (잡종 기원 녹보리똥나무와 큰보리장나무의 형태학적 및 분자적 다양성 분석 및 평가)

  • Young-Jong JANG;Dong Chan SON;Kang-Hyup LEE;Jung-Hyun LEE;Boem Kyun PARK
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.126-147
    • /
    • 2023
  • The taxonomic identity of Elaeagnus ×maritima and E. ×submacrophylla (Elaeagnaceae) in Korea is unclear, yet they are presumed to be hybrid taxa based on their morphology. To determine their hybrid origins, a morphological analysis (field surveys and specimen examinations) and a molecular analysis involving two nuclear ribosomal DNA (nrDNA) regions (internal transcribed spacer and 5S non-transcribed spacer) and one chloroplast DNA (cpDNA) region (matK) were conducted. The morphological analysis revealed that E. ×maritima showed certain morphological similarities to E. glabra, whereas E. ×submacrophylla showed certain morphological similarities to E. pungens. However, the molecular analysis indicated that E. ×maritima exhibited additive species-specific sites of E. glabra and E. macrophylla in the nrDNA regions. Notably, E. ×submacrophylla showed various aspects, with some individuals exhibiting additive species-specific sites of E. pungens and E. macrophylla in the nrDNA and E. macrophylla sequences in the cpDNA regions, some individuals exhibiting E. macrophylla sequences in the nrDNA and E. pungens sequences in the cpDNA regions, and some individuals displaying E. macrophylla sequences in both the nrDNA and cpDNA regions, despite an intermediate morphology between E. pungens and E. macrophylla. These results indicate that these two species are of hybrid origin and frequently cross between parental and hybrid individuals.

RFLP Analysis of the mtDNA COI Region in Four Abalone Species

  • Park, Choul-Ji;Kijima, Akihiro
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.101-106
    • /
    • 2006
  • The cytochrome c oxidase subunit I (COI) gene region of mitochondrial DNA (mtDNA) was examined in four abalone species to estimate its utility as a genetic marker using restriction fragment length polymorphism (RFLP) analysis. The utility was evaluated in terms of genetic divergence and relationships among Haliotis discus hannai, H. rufescens, H. rubra, and H. midae in both hemispheres of the world. There was clear genetic divergence in the mtDNA COI region between all pairs of the four species. Moreover, relationships among the abalone species were reflected in their geographical distributions and morphological characteristics. Therefore, RFLP analysis of the mtDNA COI region is a suitable genetic marker for the estimation of genetic divergence and relationships among abalone species. However, it is not effective for the evaluation of genetic differences within abalone species.

A SURVEY OF N-STRING TANGLE ANALYSES OF DNA-ENZYME SYNAPTIC COMPLEXES

  • KIM, SOOJEONG;MOON, HYEYONG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.349-369
    • /
    • 2017
  • In last 30 years, mathematical tangle theory is applied to molecular biology, especially to DNA topology. The recent issues and research results of this topic are reviewed in this paper. We introduce a tangle which models an enzyme-DNA complex. The studies of 2-string tangle equations related to Topoisomerase II action and site-specific recombination is discussed. And 3-string tangle analysis of Mu-DNA complex, n-string tangle analysis ($n{\geq}4$) of DNA-enzyme synaptic complexes are also discussed.

Linkage Disequilibrium (LD) Mapping and Tagging SNP Selection of C-Fos Induced Growth Factor (Figf) Gene in Korean Population

  • Kim, Sook;Yoo, Yeon-Kyung;Jang, Hye-Yoon;Shin, Eun-Soon;Cho, Eun-Young;Kim, Eu-Gene;NamKung, Jung-Hyun;Yang, Jun-Mo;Lee, Jong-Eun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.7-10
    • /
    • 2006
  • We performed comprehensive SNP validation and linkage disequilibrium (LD) analysis of the c-fos induced growth factor (Figf) gene in Korean population. Out of 32 SNPs, only 9 SNPs were polymorphic in Korean population. Validated SNPs formed a single extended haplotype block with strong LD through the entire length of the gene. Tagging SNP analysis picked only 2 SNPs to represent most of the genetic variation information of the Figf gene. Our results demonstrate the utility of LD block and tagging SNP analysis for an efficient way of performing a candidate gene based association study.

Relationship Between Genome Similarity and DNA-DNA Hybridization Among Closely Related Bacteria

  • Kang, Cheol-Hee;Nam, Young-Do;Chung, Won-Hyong;Quan, Zhe-Xue;Park, Yong-Ha;Park, Soo-Je;Desmone, Racheal;Wan, Xiu-Feng;Rhee, Sung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.945-951
    • /
    • 2007
  • DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (>55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.

Study on isolation of Prevotella nigrescens 9336- specific DNA probes using random cloning method (무작위 클로닝법을 이용한 Prevotella nigrescens 9336 특이 DNA 프로브의 개발에 관한 연구)

  • Gang, Soon-Won;Kim, Se-Hoon;kim, Dong- Ki;Seong, Jin-Hyo;Kim, Byung-Ock;Kim, Jung- Ki
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.269-280
    • /
    • 2002
  • The purpose of this study is to develop species-specific DNA probes and polymerase chain reaction (PCR) primers for detection and identification of Prevotella nigrescens (P. nigrescens) 9336. This study procedure includes (1) whole-genomic DNA extraction of P. nigrescens 9336 (2) construction of the genomic DNA library, (3) screening of strain-specific DNA probe by reverse Dot Hybridization method, (4) confirmation of strain-specific DNA probe by Southern blot analysis, (5) determination of nucleotide sequences of strain-specific DNA probe. Thirty-five restriction fragments of P. nigrescens 9336 genomic DNA digested with the Hind III were obtained. Reverse dot hybridization and Southern blot analysis data showed that three of them, Pn10, Pn23, and Pn35, could be P. nigrescens 9336-specific DNA probes. These data indicated that these DNA probes could be useful in detection and identification of the P. nigrescens 9336.