Browse > Article
http://dx.doi.org/10.5010/JPB.2016.43.1.82

Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis  

Hwang, Hwan Su (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
Choi, Yong Eui (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
Publication Information
Journal of Plant Biotechnology / v.43, no.1, 2016 , pp. 82-90 More about this Journal
Abstract
Most Araliaceae plant species distributed in Korea are economically important because of their high medicinal values. This study was conducted to develop barcode markers from sequence analysis of chloroplast DNA in 14 taxa of Araliaceae species grown in South Korea. Sequencing of seven chloroplast DNA regions was performed to establish the DNA barcode markers, as suggested by the Consortium for the Barcode of Life (CBOL). From the sequence analysis of chloroplast DNA, we identified specific sequences and nucleotides that allowed us to discriminate among each other 14 Korean Araliaceae species. The sequence in the region of psbA-trnH revealed the most frequent DNA indels and substitutions of all 7 regions studied. This psbA-trnH marker alone can discriminate among all 14 species. There are no differences between Korean and Chinese Panax ginseng in all seven sequenced chloroplast DNA regions. A phylogenetic tree constructed using the seven chloroplast DNA regions revealed that Tetrapanax papyriferus should be classified as an independent clade. The Aralia and Panax genera showed a close phylogenetic relationship. Five species in the Eleutherococcus genus were more closely related to Kalopanax septemlobus than to any Panax species.
Keywords
DNA barcode; phylogenetic analysis; matK; psbA-trnH; psbK-psbI; rbcL; rpoC1;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Artyukova EV, Gontcharov AA, Kozyrenko MM, Reunova GD, Zhuravlev YN (2005) Phylogenetic relationships of the far eastern Araliaceae inferred from ITS sequences of nuclear rDNA. Russ J Genet 41:649-658   DOI
2 Bae E, Yook C, Oh O, Chang S, Nohara T, Kim D (2001) Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull 24:582-585   DOI
3 CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794-12797   DOI
4 Chandler GT, and Plunkett GM (2004) Evolution in Apiales:nuclear and chloroplast markers together in (almost) perfect harmony. Bot J Linn Soc 144:123-147   DOI
5 Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. J Ethnopharmacol 72:345-393   DOI
6 Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791   DOI
7 Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S (1996) Protective effects of Acanthopanax senticosus Harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol Pharm Bull 19:1227-1230   DOI
8 Hahn D, Kasai R, Kim J, Taniyasu S, Tanaka O (1984) A new glycosyl ester of a 3, 4-seco-triterpene from korean medicinal plant, Acanthopanax chiisanensis (Araliaceae). Chem Pharm Bull 32:1244-1247   DOI
9 Hebert PDN, Cywinska A, Ball SL, Waard JRd (2003) Biological identifications through DNA barcodes. P. R. Soc. London, Series B 270:313-321   DOI
10 Jung S, Huh H, Hong J, Choi J, Chun H, Bang K, Huh M (2003) Genetic diversity and population structure of Kalopanax pictus (Araliaceae). J Plant Biol 46:255-262   DOI
11 Kim CH (2007) Araliaceae, The Genera of Vascular Plants of Korea, flora of Korea editorial committee (eds), 155, Academy publishing Co., Seoul, Korea. pp.725-732
12 Kim GR, Kim HR, Choi HS, Han JG, Kim SY, Kim CS (2015) Phylogenetic relationship of Araliaceae in Korea by seed morphological characteristics. J Wetlands Research 17:139-145   DOI
13 Kim NH, Yang DC, Eom AH (2004) A phylogenetic relationships of Araliaceae based on PCR-RAPD and ITS sequences. Korean J Plant Res 17:82-93
14 Kim WJ, Ji Y, Lee YM, Kang YM, Choi G, Moon BC (2015) Development of molecular markers for the authentication of Zanthoxyli Pericarpium by the analysis of rDNA-ITS DNA barcode regions. Kor J Herbology 30:41-47   DOI
15 Lee CH, Wen J (2004) Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants. Mol Phylogenet Evol 31:894-903   DOI
16 Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the noncoding trnH-psbA spacer region. PLoS ONE 2:e508   DOI
17 Lahaye R1, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 105:2923-2928   DOI
18 Lee CH, Lee ST (1991) A palynotaxonomic study of the genus Fatsia Decne. et Planch. and its relatives (Araliaceae). Kor J Pla Tax 21:9-25   DOI
19 Lee GH, Jung JW, Ahn EM (2009) Antioxidant activity of isolated compounds from the shoot of Aralia elata Seem. Kor J Herbology 24:137-142
20 Lee J, Kim CS, Lee IY (2015a) Discrimination of Echinochloa colona (L.) Link from other Echinochloa species using DNA Barcode. Weed Turf Sci 4:225-229   DOI
21 Lee J, Kim CS, Lee IY (2015b) Molecular identification of Pooideae, Poaceae in Korea. Weed Turf Sci 4:18-25   DOI
22 Lowry II PP, Plunkett GM, Wen J (2004) Generic relationships in Araliaceae: looking into the crystal ball. S Afr J Bot 70:382-392   DOI
23 Ma SJ, Kuk JH, Ko BS, Park KH (1995) Isolation of 3,4-dihydroxybenzoic acid with antimicrobial activity from bark of Aralia elata. Agr Chem Biotechnol (1):46
24 Ma SJ, Kuk JH, Ko BS, Park KH (1996) Isolation and characterization of 4-hydroxycinnamic acid with antimicrobial activity from Aralia elata. Agr Chem Biotechnol 39:265-267
25 Plunkett G, Soltis D, Soltis P (1997) Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Am J Bot 84:565-565   DOI
26 Nakai T (1939) Flora Sylvatica Koreana, Vol. X VI, Forestal experiment station, Government general of Chosen, Seoul, Korea, pp.1-48
27 Oh O, Chang S, Yook C, Yang K, Park S, Nohara T (2000) Two 3, 4-seco-lupane triterpenes from leaves of Acanthopanax divaricatus var. albeofructus. Chem Pharm Bull 48:879-881   DOI
28 Park WC, Lee ST (1989) A palynotaxonomic study of the Korean Araliaceae. Kor J Pla Tax 19:103-121   DOI
29 Plunkett GM, II PPL, Frodin DG, Wen J (2005) Phylogeny and geography of Schefflera: pervasive polyphyly in the largest genus of Araliaceae. Ann Mo Bot Gard 92:202-224
30 Plunkett GM, Wen J, Lowry II PP (2004) Intrafamilial classifications and characters in Araliaceae: Insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Syst Evol 245:1-39
31 Plunkett GM, Soltis DE, Soltis PS (1996) Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Am J Bot 83:499-515   DOI
32 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739   DOI
33 Umeyama A, Shoji N, Takei M, Endo K, Arihara S (1992) Ciwujianosides D1 and C1: Powerful inhibitors of histamine release induced by anti-immunoglobulin E from rat peritoneal mast cells. J Pharm Sci 81:661-662   DOI
34 Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167-177   DOI
35 Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ (2001) The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 26:144-167