Browse > Article

Relationship Between Genome Similarity and DNA-DNA Hybridization Among Closely Related Bacteria  

Kang, Cheol-Hee (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
Nam, Young-Do (Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Chung, Won-Hyong (National Genome Information Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Quan, Zhe-Xue (Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Yong-Ha (Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Soo-Je (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
Desmone, Racheal (Department of Microbiology, Miami University)
Wan, Xiu-Feng (Department of Microbiology, Miami University)
Rhee, Sung-Keun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.6, 2007 , pp. 945-951 More about this Journal
Abstract
DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (>55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.
Keywords
Genome similarity; predicted DNA-DNA hybridization signal; DNA microarray;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Bae, J. W., S. K. Rhee, J. R. Park, W. H. Chung, Y. D. Nam, I. Lee, H. Kim, and Y. H. Park. 2005. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71: 8825- 8835   DOI   ScienceOn
2 Kim, B. S., S. J. Kang, S. B. Lee, W. Hwang, and K. S. Kim. 2005. Simple method to correct gene-specific dye bias from partial dye swap information of a DNA microarray experiment. J. Microbiol. Biotechnol. 15: 1377-1383   과학기술학회마을
3 Loy, A., A. Lehner, N. Lee, J. Adamczyk, H. Meier, J. Ernst, K. H. Schleifer, and M. Wagner. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68: 5064-5081   DOI   ScienceOn
4 Rhee, S. K., X. Liu, L. Wu, S. C. Chong, X. Wan, and J. Zhou. 2004. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70: 4303-4317   DOI   ScienceOn
5 Roop, R. M., R. M. Smibert, J. L. Johnson, and N. R. Krieg. 1994. DNA homology studies of the catalase-negative campylobacters and Campylobacter fecalis, an emended description of Campylobacter sputorum, and proposal of the neotype strain of Campylobacter sputorum. Can. J. Microbiol. 31: 846-849
6 Rossello-Mora, R. and R. Amann. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25: 39-67   DOI
7 Ursing, J., M. Walder, and K. Sandstedt. 1983. Base composition and sequence homology of deoxyribonucleic acid of thermotolerant Campylobacter from human and animal sources. Curr. Microbiol. 8: 307-310   DOI
8 Vandamme, P., E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. D. Ley. 1991. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: Emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 41: 88-103   DOI   ScienceOn
9 Wu, L., D. K. Thompson, X. Liu, M. W. Fields, C. E. Bagwell, J. M. Tiedje, and J. Zhou. 2004. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ. Sci. Technol. 38: 6775- 6782   DOI   ScienceOn
10 Wu, X., X. F. Wan, G. Wu, D. Xu, and G. Lin. 2006. Whole genome phylogeny via complete composition vectors. Int. J. Bioinform. Res. Applic. 2: 219-248   DOI
11 Zhou, J. and D. K. Thompson. 2002. Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol. 13: 204-207   DOI   ScienceOn
12 Xu, W., S. Bak, A. Decker, S. M. Paquette, R. Feyereisen, and D. W. Galbraith. 2001. Microarray-based analysis of gene expression in very large gene families: The cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272: 61-74   DOI
13 Brenner, D. J., G. R. Fanning, F. J. Skerman, and S. Falkow. 1972. Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J. Bacteriol. 3: 953-965
14 Somerville, H. J. and M. L. Jones. 1972. DNA competition studies within the Bacillus cereus group of bacilli. J. Gen. Microbiol. 73: 257-265   DOI   ScienceOn
15 Qi, J., B. Wang, and B. I. Hao. 2004. Whole proteome prokaryote phylogeny without sequence alignment: A Kstring composition approach. J. Mol. Evol. 58: 1-11   DOI   ScienceOn
16 Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849   DOI   ScienceOn
17 Wu, L., D. K. Thompson, G. Li, R. A. Hurt, J. M. Tiedje, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 5780-5790   DOI   ScienceOn
18 Grimont, P. A. D., M. Y. Popoff, F. Grimont, C. Coynault, and M. Lemelin. 1980. Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4: 325-330   DOI
19 Paster, B. J. and F. E. Dewhirst. 1988. Phylogeny of campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38: 56-62   DOI
20 Fukushima, M., K. Kakinuma, H. Hayashi, H. Nagai, K. Ito, and R. Kawaguchi. 2003. Detection and identification of Mycobacterium species isolates by DNA microarray. J. Clin. Microbiol. 41: 2605-2615   DOI   ScienceOn
21 Zhang, L., U. Srinivasan, C. F. Marrs, D. Ghosh, J. R. Gilsdorf, and B. Foxman. 2004. Library on a slide for bacterial comparative genomics. BMC Microbiol. 4: 12   DOI
22 Dorris, D. R., R. Ramakrishnan, D. Trakas, F. Dudzik, R. Belval, C. Zhao, A. Nguyen, M. Domanus, and A. Mazumder. 2002. A highly reproducible, linear, and automated sample preparation method for DNA microarrays. Genome Res. 12: 976-984   DOI   ScienceOn
23 Hwang, K. O. and J. C. Cho. 2006. Evaluation of DNA microarray approach for identifying strain-specific genes. J. Microbiol. Biotechnol. 16:1773-1777   과학기술학회마을
24 Maynard, S. J. 1995. Do Bacteria Have Population Genetics? Cambridge University Press, Cambridge
25 Oh, M. K., M. J. Cha, S. G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 14: 543-549   과학기술학회마을
26 Rocap, G., F. W. Larimer, J. Lamerdin, S. Malfatti, P. Chain, N. A. Ahlgren, A. Arellano, M. Coleman, L. Hauser, W. R. Hess, Z. I. Johnson, M. Land, D. Lindell, A. F. Post, W. Regala, M. Shah, S. L. Shaw, C. Steglich, M. B. Sullivan, C. S. Ting, A. Tolonen, E. A. Webb, E. R. Zinser, and S. W. Chisholm. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042-1047   DOI   ScienceOn
27 Taroncher-Oldenburg, G., E. M. Griner, C. A. Francis, and B. B. Ward. 2003. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl. Environ. Microbiol. 69: 1159-1171   DOI   ScienceOn
28 Girke, T., J. Todd, S. Ruuska, J. White, C. Benning, and J. Ohlrogge. 2000. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124: 1570-1581   DOI   ScienceOn
29 Roop, R. M., R. M. Smibert, J. L. Johnson, and N. R. Krieg. 1984. Differential characteristics of catalase-positive campylobacters correlated with DNA homology groups. Can. J. Microbiol. 30: 938-951   DOI   ScienceOn
30 Konstantinidis, K. T. and J. M. Tiedje. 2005. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187: 6258-6264   DOI   ScienceOn
31 Wayne, L.G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464   DOI
32 Crosa, J. H., D. J. Brenner, W. H. Ewing, and S. Falkow. 1973. Molecular relationships among the Salmonelleae. J. Bacteriol. 115: 307-315
33 Kim, I. S., H. S. Yun, H. Shimisu, E. Kitagawa, H. Iwahashi, and I. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15: 1240-1249   과학기술학회마을
34 Gogarten, J. P. and J. P. Townsend. 2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3: 679-687   DOI   ScienceOn