• Title/Summary/Keyword: DNA Uptake

Search Result 116, Processing Time 0.032 seconds

Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots

  • Wu, Yunfei;Yang, Wenzhu;Wei, Jinhuan;Yoon, Hyeryung;An, Gynheung
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.178-185
    • /
    • 2017
  • Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.

Aucklandia lappa Causes Membrane Permeation of Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1827-1834
    • /
    • 2020
  • Candida albicans is a major fungal pathogen in humans. In our previous study, we reported that an ethanol extract from Aucklandia lappa weakens C. albicans cell wall by inhibiting synthesis or assembly of both (1,3)-β-D-glucan polymers and chitin. In the current study, we found that the extract is involved in permeabilization of C. albicans cell membranes. While uptake of ethidium bromide (EtBr) was 3.0% in control cells, it increased to 7.4% for 30 min in the presence of the A. lappa ethanol extract at its minimal inhibitory concentration (MIC), 0.78 mg/ml, compared to uptake by heat-killed cells. Besides, leakage of DNA and proteins was observed in A. lappa-treated C. albicans cells. The increased uptake of EtBr and leakage of cellular materials suggest that A. lappa ethanol extract induced functional changes in C. albicans cell membranes. Incorporation of diphenylhexatriene (DPH) into membranes in the A. lappa-treated C. albicans cells at its MIC decreased to 84.8%, after 60 min of incubation, compared with that of the controls, indicate that there was a change in membrane dynamics. Moreover, the anticandidal effect of the A. lappa ethanol extract was enhanced at a growth temperature of 40℃ compared to that at 35℃. The above data suggest that the antifungal activity of the A. lappa ethanol extract against C. albicans is associated with synergistic action of membrane permeabilization due to changes in membrane dynamics and cell wall damage caused by reduced formation of (1,3)-β-D-glucan and chitin.

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.

THE EFFECTS OF CELL WALL PROTEINS OF STREPTOCOCCUS SPP. ON DNA SYNTHESIS OF L929 CELLS AND THEIR SDS-PAGE PATTERNS (연쇄 구균의 세포벽 단백질이 L929 세포의 DNA합성에 미치는 영향 및 SDS-PAGE 양상에 관한 연구)

  • Lee, Se-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.71-95
    • /
    • 1995
  • Bacteria have been regarded as a one of major etiologic factors in root canal infections. In endodontic treatment the effective removal of pathogenic microorganisms in the root canal is the key to successful outcome. Bacterial cell wall components may play an important role in the development of pulpal and periapical disease. The purpose of this study was to evaluate the effect of sonic extracts of Streptococcus spp. on cultured L929 cells and to characterize cell wall protein profiles of Streptococcus spp. Streptococcus spp. were isolated from infected root canals and identified with Vitek Systems(Biomeriux, USA). Five streptococci, namely S. sanguis, S. mitis, S uberis, S. mutans (ATCC 10449) and S. faecalis (ATCC 19433) weere enriched in brain heart infusion broth. Cell pellets were sonicated and cell wall extracts were dialyzed and membrane filtered. Prepared cell wall proteins were applied to cultured L929 cell. The cell reaction were evaluated by monitoring DNA synthesis, cell numbers and the change of cell morphology. The total cell wall protein profiles of microorganisms were characterized by sodium dodecyl sulfate polyacrylamide-gel eledruphoresis(SDS-PAGE). DNA synthesis of L929 cells were reduced by the increasing concentration of sonic extracts. DNA synthesis was significantly suppressed in more than $50{\mu}g$/ml of sonic extract conentration in five streptococci. S. nutans (ATCC 10449) showed stronger suppression on DNA synthesis than remaining four streptococci, which had the similar effect on DNA synthesis. Analysis of DNA synthesis measured by [$^3H$]-thymidine uptake was more sensitvie method than cell counting. Sonic extracts affected the microscopic findings of L929 cells. The protein profiles indicated that all five strains shared two major proteins with molecular masses of 70.8 and 57.5 kD respectively. S. uberis and S. mutans shared common minor proteins of which molecular weights were 147.9 and 112.2 kD respectively. However some minor proteins were unique for S. mitis, S. uberis and S. faecalis.

  • PDF

Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery (효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성)

  • Heo, Sun-Heang;Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.454-459
    • /
    • 2007
  • Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In $^1H-NMR$ spectra, specific peaks appeared both of FA and LMWSC in $D_2O$. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. hi vitro transfection efficiency was assayed by fluorescence spectroscopy WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.

Induction of Growth Inhibition by BCH in KB Human Oral Epidermoid Carcinoma Cells (구강 편평세포암종 KB세포에서 아미노산 수송억제제 BCH에 의한 세포성장 억제)

  • Yoon, Jung-Hoon;Kim, Youn-Bae;Kim, Do-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.758-763
    • /
    • 2003
  • Amino acid transporters play an important role in supplying nutrients to normal and cancer cells for cell proliferation. System L is a major transport system responsible for the N $a^{+}$-independent, large neutral amino acids including several essential amino acids. L-type amino acid transporter 1 (LAT1), an isoform of system L amino acid transporter, is highly expressed presumably to support their continuous growth and proliferation in malignant tumors. 2-Aminobicyclo- (2,2,1) -heptane-2-carboxylic acid (BCH) is a model compound for study of amino acid transporter as a system L selective inhibitor. In the present study, we examined whether BCH induced growth inhibition in KB human oral squamous carcinoma cell line or not. The uptake of L-[$^{14}$ C]leucine by KB cells is inhibited by BCH in a concentration dependent manner with a Ι $C_{50}$ value of 75.3$\pm$6.2 ${\mu}{\textrm}{m}$ and a $K_{i}$ value of 98.7$\pm$ 4.1 ${\mu}{\textrm}{m}$. The growth of KB cells is inhibited by BCH in time dependent manner and concentration dependent manner with a Ι $C_{50}$ value of 11.1 $\pm$0.8 mM. In the DNA of KB cells treated with the various concentrations and various periods of BCH, the characteristic ladders associated with DNA fragmentation were not observed. These results suggest that BCH inhibits the growth of KB oral epidermoid carcinoma cells through the inhibition of transport of neutral amino acids into cells without DNA break down. This phenomenon will be a new rationale for anti-cancer therapy.y.

Effects of Progesterone on the Macromolecular Syntheses in Mouse Preimplantation Embryos in Vitro (프로제스트론이 培養中인 생쥐 初期胚兒의 高分子化合物合成에 미치는 影響에 관하여)

  • Cho, Wan-Kyoo;Kwon, Hyuk-Bang
    • The Korean Journal of Zoology
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 1979
  • Metabolic changes of early mouse embryos treated with progesterone were investigated in order to elucidate the mode of action of progesterone on embryogenesis in vitro. The embryos were cultured, and labelled with radioactive precursors of macromolecules for certain periods in the absence or presence of various concentrations of progesterone by employing the microtube culture technique. The changes of transport and macromolecular synthesis systems of the embryos were examined by measuring the amounts of uptake and incorporation of the precursors. The results obtained were as follows: 1. Progesterone stimulated markedly the uptake of amino acids, but rather suppressed their incorporation by embryonic cells. 2. Progesterone suppressed both the uptake and incorporation of nucleotide precursors (uridine and thymidine) by embryonic cells. 3. Progesterone penetrated into the embryonic cell membranes and was taken up by them. The present results seem to indicate that the inhibition of the progesterone on the mammalian embryogenesis in vitro may not be directly related to the membrane transport system. They seem to imply that progesterone would penetrate into the embryonic cells and may directly block the biosynethetic pathways of macromolecules, and so lead to the inhibition of the embryogenesis in vitro.

  • PDF

Purification of Methioninase from Pseudomonas putida and Its Effect on the Uptake of ^11C-Methionine in Vivo. (Pseudomonas putida 유래 Methioninase의 정제 및 생체내 ^11C-Methionine 섭취에 미치는 영향)

  • 변상성;박귀근
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.377-382
    • /
    • 2003
  • Purification of methioninase resulted in a yield of 69%, and SDS-PAGE analysis of the purified product revealed a single band of approximately 43 kDa in molecular weight. in vitro experiments with cancer cells incubated in methionine-free media demonstrated an increase in $^{11}$ C-methionine uptake to 25.8$\pm$1.1% at 6 hr, 31.8$\pm$0.8% at 24 hr, and 62.2$\pm$0.6% at 48hr, compared to controls. Treatment of the cancer cells with purified methioninase showed no decrease in survival after a 2 hr incubation with 0.01 U/ml, but survival of RR1022 cells decreased 30% after 24 to 48 hr incubation. SKOV-3 cells showed a 5% and 14% decrease in survival with 0.1 and 1 U/ml methioninase after 24 hr. After 48hr survival decreased 15% and 24% with 0.1 and 1 U/ml methioninase. Measurements of $^{11}$ C-methionine uptake in RR1022 cells demonstrated no change at 2 hr, but a 13.7$\pm$4.7% and 40.7$\pm$2.6% increase in uptake at 24 and 48 hr, respectively. SKOV-3 cells also showed no change at 2 hr, but had a 17.7$\pm$7.2% and 38.9$\pm$4.9% increase in $^{11}$ C-methionine uptake after 24 hr and 48 hr treatment with methioninase, respectively. $^{11}$ C-methionine PET imaging revealed clear visualization of both the tumors and contralateral infectious lesions. Administration of rMET appeared to result in a slight increase in tumor:nontumor contrast on $^{11}$ C-methionine PET images. Injection of purified methioninase also produced PET images where tumor uptake was higher than that of infectious lesions.

Flavonoid Fraction Purified from Rhus verniciflua Stokes Actively Inhibits Cell Growth Via Induction of Apoptosis in Mouse Tumorigenic Hepatocytes

  • Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.10 no.2
    • /
    • pp.74-79
    • /
    • 2004
  • Dietary flavonoids are currently receiving considerable attention in developing novel cancer-preventive approaches because of their potential capacities to actively induce apoptosis of cancer cells. In our previous report, a flavonoid fraction, which consisted mainly of protocatechuic acid, fustin, fisetin, sulfuretin, and butein and named RCMF (RVS chloroform-methanol fraction), was prepared from a crude acetone extract of Rhus verniciflua Stokes (RVS) that is traditionally used as food additive and herbal medicine. In this study, we evaluated the effects of the RCMF on cell proliferation and apoptosis using SV40-transformed tumorigenic hepatocytes, BNL SV A.8. Tritium uptake assay showing the proliferative capacity of the cells was strongly suppressed in the presence of RCMF. This anti-proliferative effect was further confirmed through trypan blue exclusion. RCMF-mediated suppression of cell growth was verified to be apoptotic, based on the increase in DNA fragmentation, low fluorescence intensity in nuclei after propidium iodide staining, and the appearance of DNA laddering. Collectively, this study demonstrated that RCMF can be approached as a potential agent that is capable of significantly inhibiting cell growth of hepatic cancer cells.

Genetic and Phenotypic Diversity of Dichlorprop-Degrading Bacteria Isolated from Soils

  • Park, Hae-Dong;Ka, Jong-Ok
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • Nine dichlorprop-degrading bacteria and three pairs of bacteria showing syntrophic metabolism of the herbicide were isolated from soils, and their genetic and phenotypic characteristics were investigated. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genera, Sphingomonas, Herbaspirillum, and Bradyrhizobium. Twelve different chromosomal DNA patterns were obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences from the 15 isolates. The isolates were able to utilize the herbicide dichlorprop as a sole source of carbon and energy and their dichlorprop derogative pathways were induced by the presence of dichlorprop. Most of the isolates and syntrophic pairs were able to degrade both (R)- and (S)-dichlorprop, but strain DP522 exhibited enantioselective degradation of (S)-dichlorprop. The isolates degraded 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid , and mecoprop, in addition to dichlorprop. Oxygen uptake experiments indicated that most of the isolates degraded dichlorprop through 2,4-dichlorophenol.