DOI QR코드

DOI QR Code

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Ja-Hyun Koo (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Je-Min Choi (Department of Life Science, College of Natural Sciences, Hanyang University)
  • Received : 2015.12.13
  • Accepted : 2016.01.26
  • Published : 2016.02.29

Abstract

Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.

Keywords

Acknowledgement

This study is supported by the Korea Health technology R&D project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (HI14C0234).

References

  1. Erazo-Oliveras, A., N. Muthukrishnan, R. Baker, T. Y. Wang, and J. P. Pellois. 2012. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 5: 1177-1209. https://doi.org/10.3390/ph5111177
  2. Ramsey, J. D., and N. H. Flynn. 2015. Cell-penetrating peptides transport therapeutics into cells. Pharmacol. Ther. 154: 78-86. https://doi.org/10.1016/j.pharmthera.2015.07.003
  3. Bechara, C., and S. Sagan. 2013. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 587: 1693-1702. https://doi.org/10.1016/j.febslet.2013.04.031
  4. Ryser, H. J. and R. Hancock. 1965. Histones and basic poly-amino acids stimulate the uptake of albumin by tumor cells in culture. Science 150: 501-503. https://doi.org/10.1126/science.150.3695.501
  5. Shen, W. C., and H. J. Ryser. 1978. Conjugation of poly-L-lysine to albumin and horseradish peroxidase: a novel method of enhancing the cellular uptake of proteins. Proc. Natl. Acad. Sci. U. S. A. 75: 1872-1876. https://doi.org/10.1073/pnas.75.4.1872
  6. Frankel, A. D., and C. O. Pabo. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189-1193. https://doi.org/10.1016/0092-8674(88)90263-2
  7. Vives, E., P. Brodin, and B. Lebleu. 1997. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010-16017. https://doi.org/10.1074/jbc.272.25.16010
  8. Schwarze, S. R., A. Ho, A. Vocero-Akbani, and S. F. Dowdy. 1999. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285: 1569-1572. https://doi.org/10.1126/science.285.5433.1569
  9. Elliott, G., and P. O'Hare. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88: 223-233. https://doi.org/10.1016/S0092-8674(00)81843-7
  10. Dilber, M. S., A. Phelan, A. Aints, A. J. Mohamed, G. Elliott, C. I. Smith, and P. O'Hare. 1999. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther. 6: 12-21. https://doi.org/10.1038/sj.gt.3300838
  11. Derossi, D., A. H. Joliot, G. Chassaing, and A. Prochiantz. 1994. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269: 10444-10450. https://doi.org/10.1016/S0021-9258(17)34080-2
  12. Joliot, A., C. Pernelle, H. agostini-Bazin, and A. Prochiantz. 1991. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 88: 1864-1868. https://doi.org/10.1073/pnas.88.5.1864
  13. Pooga, M., M. Hallbrink, M. Zorko, and U. Langel. 1998. Cell penetration by transportan. FASEB J. 12: 67-77. https://doi.org/10.1096/fasebj.12.1.67
  14. Wender, P. A., D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, and J. B. Rothbard. 2000. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97: 13003-13008. https://doi.org/10.1073/pnas.97.24.13003
  15. Oehlke, J., A. Scheller, B. Wiesner, E. Krause, M. Beyermann, E. Klauschenz, M. Melzig, and M. Bienert. 1998. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta 1414: 127-139. https://doi.org/10.1016/S0005-2736(98)00161-8
  16. Marks, J. R., J. Placone, K. Hristova, and W. C. Wimley. 2011. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J. Am. Chem. Soc. 133: 8995-9004. https://doi.org/10.1021/ja2017416
  17. Koren, E., and V. P. Torchilin. 2012. Cell-penetrating peptides: breaking through to the other side. Trends Mol. Med. 18: 385-393. https://doi.org/10.1016/j.molmed.2012.04.012
  18. Fonseca, S. B., M. P. Pereira, and S. O. Kelley. 2009. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv. Drug Deliv. Rev. 61: 953-964. https://doi.org/10.1016/j.addr.2009.06.001
  19. El-Sayed, A., S. Futaki, and H. Harashima. 2009. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J. 11: 13-22. https://doi.org/10.1208/s12248-008-9071-2
  20. Lim, S., W. J. Kim, Y. H. Kim, and J. M. Choi. 2012. Identification of a novel cell-penetrating peptide from human phosphatidate phosphatase LPIN3. Mol. Cells 34: 577-582. https://doi.org/10.1007/s10059-012-0284-y
  21. Zaro, J. L., J. E. Vekich, T. Tran, and W. C. Shen. 2009. Nuclear localization of cell-penetrating peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Mol. Pharm. 6: 337-344. https://doi.org/10.1021/mp800239p
  22. Regberg, J., A. Srimanee, and U. Langel. 2012. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel) 5: 991-1007. https://doi.org/10.3390/ph5090991
  23. Bolhassani, A. 2011. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim. Biophys. Acta 1816: 232-246.
  24. Hashida, H., M. Miyamoto, Y. Cho, Y. Hida, K. Kato, T. Kurokawa, S. Okushiba, S. Kondo, H. aka-Akita, and H. Katoh. 2004. Fusion of HIV-1 Tat protein transduction domain to poly-lysine as a new DNA delivery tool. Br. J. Cancer 90: 1252-1258. https://doi.org/10.1038/sj.bjc.6601680
  25. Saleh, A. F., H. Aojula, Y. Arthanari, S. Offerman, M. Alkotaji, and A. Pluen. 2010. Improved Tat-mediated plasmid DNA transfer by fusion to LK15 peptide. J. Control Release 143: 233-242. https://doi.org/10.1016/j.jconrel.2009.12.025
  26. Andaloussi, S. E., T. Lehto, I. Mager, K. Rosenthal-Aizman, I. I. Oprea, O. E. Simonson, H. Sork, K. Ezzat, D. M. Copolovici, K. Kurrikoff, J. R. Viola, E. M. Zaghloul, R. Sillard, H. J. Johansson, H. F. Said, P. Guterstam, J. Suhorutsenko, P. M. Moreno, N. Oskolkov, J. Halldin, U. Tedebark, A. Metspalu, B. Lebleu, J. Lehtio, C. I. Smith, and U. Langel. 2011. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res. 39: 3972-3987. https://doi.org/10.1093/nar/gkq1299
  27. Arthanari, Y., A. Pluen, R. Rajendran, H. Aojula, and C. Demonacos. 2010. Delivery of therapeutic shRNA and siRNA by Tat fusion peptide targeting BCR-ABL fusion gene in Chronic Myeloid Leukemia cells. J. Control Release 145: 272-280. https://doi.org/10.1016/j.jconrel.2010.04.011
  28. Endoh, T., and T. Ohtsuki. 2009. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Deliv. Rev. 61: 704-709. https://doi.org/10.1016/j.addr.2009.04.005
  29. Eguchi, A., B. R. Meade, Y. C. Chang, C. T. Fredrickson, K. Willert, N. Puri, and S. F. Dowdy. 2009. Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat. Biotechnol. 27: 567-571. https://doi.org/10.1038/nbt.1541
  30. Endoh, T., M. Sisido, and T. Ohtsuki. 2008. Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. Bioconjug. Chem. 19: 1017-1024. https://doi.org/10.1021/bc800020n
  31. Lindgren, M., K. Rosenthal-Aizman, K. Saar, E. Eiriksdottir, Y. Jiang, M. Sassian, P. Ostlund, M. Hallbrink, and U. Langel. 2006. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem. Pharmacol. 71: 416-425. https://doi.org/10.1016/j.bcp.2005.10.048
  32. Dubikovskaya, E. A., S. H. Thorne, T. H. Pillow, C. H. Contag, and P. A. Wender. 2008. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc. Natl. Acad. Sci. U. S. A. 105: 12128-12133 https://doi.org/10.1073/pnas.0805374105
  33. Tacken, P. J., V. de, I, R. Torensma, and C. G. Figdor. 2007. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7: 790-802. https://doi.org/10.1038/nri2173
  34. Palucka, K., and J. Banchereau. 2012. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12: 265-277. https://doi.org/10.1038/nrc3258
  35. Yamashita, M., M. Kimura, M. Kubo, C. Shimizu, T. Tada, R. M. Perlmutter, and T. Nakayama. 1999. T cell antigen receptor-mediated activation of the Ras/mitogen-activated protein kinase pathway controls interleukin 4 receptor function and type-2 helper T cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 96: 1024-1029. https://doi.org/10.1073/pnas.96.3.1024
  36. Myou, S., X. Zhu, S. Myo, E. Boetticher, A. Y. Meliton, J. Liu, N. M. Munoz, and A. R. Leff. 2003. Blockade of airway inflammation and hyperresponsiveness by HIV-TAT-dominant negative Ras. J. Immunol. 171: 4379-4384. https://doi.org/10.4049/jimmunol.171.8.4379
  37. Fruman, D. A., F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley. 2000. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat. Genet. 26: 379-382 https://doi.org/10.1038/81715
  38. Myou, S., A. R. Leff, S. Myo, E. Boetticher, J. Tong, A. Y. Meliton, J. Liu, N. M. Munoz, and X. Zhu. 2003. Blockade of inflammation and airway hyperresponsiveness in immune- sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J. Exp. Med. 198: 1573-1582. https://doi.org/10.1084/jem.20030298
  39. Brownlie, R. J. and R. Zamoyska. 2013. T cell receptor signal-ling networks: branched, diversified and bounded. Nat. Rev. Immunol. 13: 257-269. https://doi.org/10.1038/nri3403
  40. Kim, K. D., J. M. Choi, W. J. Chae, and S. K. Lee. 2009. Synergistic inhibition of T-cell activation by a cell-permeable ZAP-70 mutant and ctCTLA-4. Biochem. Biophys. Res. Commun. 381: 355-360. https://doi.org/10.1016/j.bbrc.2009.02.046
  41. Kaplan, M. H., U. Schindler, S. T. Smiley, and M. J. Grusby. 1996. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4: 313-319. https://doi.org/10.1016/S1074-7613(00)80439-2
  42. McCusker, C. T., Y. Wang, J. Shan, M. W. Kinyanjui, A. Villeneuve, H. Michael, and E. D. Fixman. 2007. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. J. Immunol. 179: 2556-2564. https://doi.org/10.4049/jimmunol.179.4.2556
  43. Ivanov, I. I., B. S. McKenzie, L. Zhou, C. E. Tadokoro, A. Lepelley, J. J. Lafaille, D. J. Cua, and D. R. Littman. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126: 1121-1133. https://doi.org/10.1016/j.cell.2006.07.035
  44. Park, T. Y., S. D. Park, J. Y. Cho, J. S. Moon, N. Y. Kim, K. Park, R. H. Seong, S. W. Lee, T. Morio, A. L. Bothwell, and S. K. Lee. 2014. RORgammat-specific transcriptional interactomic inhibition suppresses autoimmunity associated with TH17 cells. Proc. Natl. Acad. Sci. U. S. A. 111: 18673-18678. https://doi.org/10.1073/pnas.1413687112
  45. Walunas, T. L., D. J. Lenschow, C. Y. Bakker, P. S. Linsley, G. J. Freeman, J. M. Green, C. B. Thompson, and J. A. Bluestone. 1994. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1: 405-413. https://doi.org/10.1016/1074-7613(94)90071-X
  46. Choi, J. M., M. H. Ahn, W. J. Chae, Y. G. Jung, J. C. Park, H. M. Song, Y. E. Kim, J. A. Shin, C. S. Park, J. W. Park, T. K. Park, J. H. Lee, B. F. Seo, K. D. Kim, E. S. Kim, D. H. Lee, S. K. Lee, and S. K. Lee. 2006. Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat. Med. 12: 574-579. https://doi.org/10.1038/nm1385
  47. Choi, J. M., S. H. Kim, J. H. Shin, T. Gibson, B. S. Yoon, D. H. Lee, S. K. Lee, A. L. Bothwell, J. S. Lim, and S. K. Lee. 2008. Transduction of the cytoplasmic domain of CTLA-4 inhibits TcR-specific activation signals and prevents collagen-induced arthritis. Proc. Natl. Acad. Sci. U. S. A. 105: 19875-19880. https://doi.org/10.1073/pnas.0805198105
  48. Lim, S., W. J. Kim, Y. H. Kim, S. Lee, J. H. Koo, J. A. Lee, H. Yoon, D. H. Kim, H. J. Park, H. M. Kim, H. G. Lee, K. J. Yun, J. U. Lee, S. J. Hun, K. L. Kyun, J. Doh, H. Kim, S. K. Lee, A. L. Bothwell, M. Suh, and J. M. Choi. 2015. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat. Commun. 6: 8244.
  49. Jo, D., D. Liu, S. Yao, R. D. Collins, and J. Hawiger. 2005. Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nat. Med. 11: 892-898 https://doi.org/10.1038/nm1269
  50. Choi, J. M., J. H. Shin, M. H. Sohn, M. J. Harding, J. H. Park, Z. Tobiasova, D. Y. Kim, S. E. Maher, W. J. Chae, S. H. Park, C. G. Lee, S. K. Lee, and A. L. Bothwell. 2010. Cell-permeable Foxp3 protein alleviates autoimmune disease associated with inflammatory bowel disease and allergic airway inflammation. Proc. Natl. Acad. Sci. U. S. A. 107: 18575-18580. https://doi.org/10.1073/pnas.1000400107
  51. Baeuerle, P. A., and T. Henkel. 1994. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12: 141-179. https://doi.org/10.1146/annurev.iy.12.040194.001041
  52. Israel, A. 2010. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol. 2: a000158.
  53. Choi, M., S. Rolle, M. Wellner, M. C. Cardoso, C. Scheidereit, F. C. Luft, and R. Kettritz. 2003. Inhibition of NF-kappaB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood 102: 2259-2267. https://doi.org/10.1182/blood-2002-09-2960
  54. Macian, F. 2005. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5: 472-484. https://doi.org/10.1038/nri1632
  55. Aramburu, J., M. B. Yaffe, C. Lopez-Rodriguez, L. C. Cantley, P. G. Hogan, and A. Rao. 1999. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285: 2129-2133. https://doi.org/10.1126/science.285.5436.2129
  56. Choi, J. M., J. H. Sohn, T. Y. Park, J. W. Park, and S. K. Lee. 2012. Cell permeable NFAT inhibitory peptide Sim-2-VIVIT inhibits T-cell activation and alleviates allergic airway inflammation and hyper-responsiveness. Immunol. Lett. 143: 170-176. https://doi.org/10.1016/j.imlet.2012.01.016
  57. Gaestel, M. 2006. MAPKAP kinases - MKs - two's company, three's a crowd. Nat. Rev. Mol. Cell Biol. 7: 120-130. https://doi.org/10.1038/nrm1834
  58. Brugnano, J. L., B. K. Chan, B. L. Seal, and A. Panitch. 2011. Cell-penetrating peptides can confer biological function: regulation of inflammatory cytokines in human monocytes by MK2 inhibitor peptides. J. Control Release 155: 128-133. https://doi.org/10.1016/j.jconrel.2011.05.007
  59. Moschos, S. A., S. W. Jones, M. M. Perry, A. E. Williams, J. S. Erjefalt, J. J. Turner, P. J. Barnes, B. S. Sproat, M. J. Gait, and M. A. Lindsay. 2007. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem. 18: 1450-1459. https://doi.org/10.1021/bc070077d
  60. Fisher, L., U. Soomets, T. Cortes, V, L. Chilton, Y. Jiang, U. Langel, and K. Iverfeldt. 2004. Cellular delivery of a double-stranded oligonucleotide NFkappaB decoy by hybridization to complementary PNA linked to a cell-penetrating peptide. Gene Ther. 11: 1264-1272.
  61. Lee, S. W., J. H. Kim, M. C. Park, Y. B. Park, W. J. Chae, T. Morio, D. H. Lee, S. H. Yang, S. K. Lee, S. K. Lee, and S. K. Lee. 2012. Alleviation of rheumatoid arthritis by cell-transducible methotrexate upon transcutaneous delivery. Biomaterials 33: 1563-1572. https://doi.org/10.1016/j.biomaterials.2011.10.079
  62. Rothbard, J. B., S. Garlington, Q. Lin, T. Kirschberg, E. Kreider, P. L. McGrane, P. A. Wender, and P. A. Khavari. 2000. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. 6: 1253-1257. https://doi.org/10.1038/81359
  63. Banchereau, J., and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252. https://doi.org/10.1038/32588
  64. Steinman, R. M., and J. Banchereau. 2007. Taking dendritic cells into medicine. Nature 449: 419-426. https://doi.org/10.1038/nature06175
  65. Mukherji, B., N. G. Chakraborty, S. Yamasaki, T. Okino, H. Yamase, J. R. Sporn, S. K. Kurtzman, M. T. Ergin, J. Ozols, J. Meehan, and . 1995. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc. Natl. Acad. Sci. U. S. A. 92: 8078-8082. https://doi.org/10.1073/pnas.92.17.8078
  66. Constantino, J., C. Gomes, A. Falcao, M. T. Cruz, and B. M. Neves. 2016. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl. Res. 168: 74-95. https://doi.org/10.1016/j.trsl.2015.07.008
  67. Florcken, A., J. Kopp, L. A. van, K. Movassaghi, A. Takvorian, K. Johrens, M. Mobs, C. Schonemann, B. Sawitzki, K. Egerer, B. Dorken, A. Pezzutto, and J. Westermann. 2013. Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer: a clinical phase I/II study. Hum. Vaccin. Immunother. 9: 1217-1227. https://doi.org/10.4161/hv.24149
  68. Hus, I., J. Rolinski, J. Tabarkiewicz, K. Wojas, A. Bojarska-Junak, J. Greiner, K. Giannopoulos, A. Dmoszynska, and M. Schmitt. 2005. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia 19: 1621-1627. https://doi.org/10.1038/sj.leu.2403860
  69. Pinzon-Charry, A., T. Maxwell, and J. A. Lopez. 2005. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol. Cell Biol. 83: 451-461. https://doi.org/10.1111/j.1440-1711.2005.01371.x
  70. Orsini, E., A. Guarini, S. Chiaretti, F. R. Mauro, and R. Foa. 2003. The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res. 63: 4497-4506.
  71. Schnurr, M., Q. Chen, A. Shin, W. Chen, T. Toy, C. Jenderek, S. Green, L. Miloradovic, D. Drane, I. D. Davis, J. Villadangos, K. Shortman, E. Maraskovsky, and J. Cebon. 2005. Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood 105: 2465-2472. https://doi.org/10.1182/blood-2004-08-3105
  72. de, V., I, W. J. Lesterhuis, N. M. Scharenborg, L. P. Engelen, D. J. Ruiter, M. J. Gerritsen, S. Croockewit, C. M. Britten, R. Torensma, G. J. Adema, C. G. Figdor, and C. J. Punt. 2003. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res. 9: 5091-5100.
  73. Jongmans, W., D. M. Tiemessen, V. van, I, P. F. Mulders, and E. Oosterwijk. 2005. Th1-polarizing capacity of clinical-grade dendritic cells is triggered by Ribomunyl but is compromised by PGE2: the importance of maturation cocktails. J. Immunother. 28: 480-487. https://doi.org/10.1097/01.cji.0000171290.78495.66
  74. Aarntzen, E. H., M. Srinivas, G. Schreibelt, A. Heerschap, C. J. Punt, C. G. Figdor, W. J. Oyen, and V. de, I. 2013. Reducing cell number improves the homing of dendritic cells to lymph nodes upon intradermal vaccination. Oncoimmunology 2: e24661.
  75. Lesterhuis, W. J., V. de, I, G. Schreibelt, A. J. Lambeck, E. H. Aarntzen, J. F. Jacobs, N. M. Scharenborg, M. W. van de Rakt, A. J. de Boer, S. Croockewit, M. M. van Rossum, R. Mus, W. J. Oyen, O. C. Boerman, S. Lucas, G. J. Adema, C. J. Punt, and C. G. Figdor. 2011. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin. Cancer Res. 17: 5725-5735. https://doi.org/10.1158/1078-0432.CCR-11-1261
  76. Guo, J., J. Zhu, X. Sheng, X. Wang, L. Qu, Y. Han, Y. Liu, H. Zhang, L. Huo, S. Zhang, B. Lin, and Z. Yang. 2007. Intratumoral injection of dendritic cells in combination with local hyperthermia induces systemic antitumor effect in patients with advanced melanoma. Int. J. Cancer 120: 2418-2425. https://doi.org/10.1002/ijc.22551
  77. Saji, H., W. Song, K. Furumoto, H. Kato, and E. G. Engleman. 2006. Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin. Cancer Res. 12: 2568-2574. https://doi.org/10.1158/1078-0432.CCR-05-1986
  78. Fong, L., D. Brockstedt, C. Benike, L. Wu, and E. G. Engleman. 2001. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol. 166: 4254-4259. https://doi.org/10.4049/jimmunol.166.6.4254
  79. Thurner, B., I. Haendle, C. Roder, D. Dieckmann, P. Keikavoussi, H. Jonuleit, A. Bender, C. Maczek, D. Schreiner, D. P. von den, E. B. Brocker, R. M. Steinman, A. Enk, E. Kampgen, and G. Schuler. 1999. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190: 1669-1678. https://doi.org/10.1084/jem.190.11.1669
  80. Mackensen, A., B. Herbst, J. L. Chen, G. Kohler, C. Noppen, W. Herr, G. C. Spagnoli, V. Cerundolo, and A. Lindemann. 2000. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. J. Cancer 86: 385-392. https://doi.org/10.1002/(SICI)1097-0215(20000501)86:3<385::AID-IJC13>3.0.CO;2-T
  81. Aarntzen, E. H., M. Srinivas, J. H. De Wilt, J. F. Jacobs, W. J. Lesterhuis, A. D. Windhorst, E. G. Troost, J. J. Bonenkamp, M. M. van Rossum, W. A. Blokx, R. D. Mus, O. C. Boerman, C. J. Punt, C. G. Figdor, W. J. Oyen, and V. de, I. 2011. Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3'-fluoro-3'-deoxy-thymidine ([18F]FLT) PET imaging. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. 108: 18396-18399.
  82. Palucka, A. K., H. Ueno, J. Connolly, F. Kerneis-Norvell, J. P. Blanck, D. A. Johnston, J. Fay, and J. Banchereau. 2006. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+T-cell immunity. J. Immunother. 29: 545-557. https://doi.org/10.1097/01.cji.0000211309.90621.8b
  83. Murphy, G., B. Tjoa, H. Ragde, G. Kenny, and A. Boynton. 1996. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 29: 371-380. https://doi.org/10.1002/(SICI)1097-0045(199612)29:6<371::AID-PROS5>3.0.CO;2-B
  84. Nair, S. K., M. Morse, D. Boczkowski, R. I. Cumming, L. Vasovic, E. Gilboa, and H. K. Lyerly. 2002. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 235: 540-549. https://doi.org/10.1097/00000658-200204000-00013
  85. Okada, H., P. Kalinski, R. Ueda, A. Hoji, G. Kohanbash, T. E. Donegan, A. H. Mintz, J. A. Engh, D. L. Bartlett, C. K. Brown, H. Zeh, M. P. Holtzman, T. A. Reinhart, T. L. Whiteside, L. H. Butterfield, R. L. Hamilton, D. M. Potter, I. F. Pollack, A. M. Salazar, and F. S. Lieberman. 2011. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29: 330-336.
  86. Reichardt, V. L., C. Y. Okada, A. Liso, C. J. Benike, K. E. Stockerl-Goldstein, E. G. Engleman, K. G. Blume, and R. Levy. 1999. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma--a feasibility study. Blood 93: 2411-2419. https://doi.org/10.1182/blood.V93.7.2411
  87. Bonifaz, L., D. Bonnyay, K. Mahnke, M. Rivera, M. C. Nussenzweig, and R. M. Steinman. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196: 1627-1638. https://doi.org/10.1084/jem.20021598
  88. Klechevsky, E., A. L. Flamar, Y. Cao, J. P. Blanck, M. Liu, A. O'Bar, O. gouna-Deciat, P. Klucar, L. Thompson-Snipes, S. Zurawski, Y. Reiter, A. K. Palucka, G. Zurawski, and J. Banchereau. 2010. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 116: 1685-1697.
  89. Ni, L., I. Gayet, S. Zurawski, D. Duluc, A. L. Flamar, X. H. Li, A. O'Bar, S. Clayton, A. K. Palucka, G. Zurawski, J. Banchereau, and S. Oh. 2010. Concomitant activation and antigen uptake via human dectin-1 results in potent antigen-specific CD8+ T cell responses. J. Immunol. 185: 3504-3513. https://doi.org/10.4049/jimmunol.1000999
  90. Joffre, O. P., D. Sancho, S. Zelenay, A. M. Keller, and Reis e Sousa. 2010. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur. J. Immunol. 40: 1255-1265. https://doi.org/10.1002/eji.201040419
  91. Flacher, V., F. Sparber, C. H. Tripp, N. Romani, and P. Stoitzner. 2009. Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy. Cancer Immunol. Immunother. 58: 1137-1147. https://doi.org/10.1007/s00262-008-0563-9
  92. Bozzacco, L., C. Trumpfheller, F. P. Siegal, S. Mehandru, M. Markowitz, M. Carrington, M. C. Nussenzweig, A. G. Piperno, and R. M. Steinman. 2007. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. 104: 1289-1294.
  93. Dubensky, T. W., Jr., and S. G. Reed. 2010. Adjuvants for cancer vaccines. Semin. Immunol. 22: 155-161. https://doi.org/10.1016/j.smim.2010.04.007
  94. Li, D., G. Romain, A. L. Flamar, D. Duluc, M. Dullaers, X. H. Li, S. Zurawski, N. Bosquet, A. K. Palucka, G. R. Le, A. O'Garra, G. Zurawski, J. Banchereau, and S. Oh. 2012. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J. Exp. Med. 209: 109-121. https://doi.org/10.1084/jem.20110399
  95. Wang, R. F. and H. Y. Wang. 2002. Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells. Nat. Biotechnol. 20: 149-154. https://doi.org/10.1038/nbt0202-149
  96. Kronenberg, K., S. Brosch, F. Butsch, Y. Tada, N. Shibagaki, M. C. Udey, and S. E. von. 2010. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major. J. Invest. Dermatol. 130: 2602-2610. https://doi.org/10.1038/jid.2010.171
  97. Shibagaki, N., and M. C. Udey. 2002. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J. Immunol. 168: 2393-2401. https://doi.org/10.4049/jimmunol.168.5.2393
  98. Viehl, C. T., M. Becker-Hapak, J. S. Lewis, Y. Tanaka, U. K. Liyanage, D. C. Linehan, T. J. Eberlein, and P. S. Goedegebuure. 2005. A tat fusion protein-based tumor vaccine for breast cancer. Ann. Surg. Oncol. 12: 517-525. https://doi.org/10.1245/ASO.2005.06.028
  99. Pouniotis, D. S., S. Esparon, V. Apostolopoulos, and G. A. Pietersz. 2011. Whole protein and defined CD8(+) and CD4(+) peptides linked to penetratin targets both MHC class I and II antigen presentation pathways. Immunol. Cell Biol. 89: 904-913. https://doi.org/10.1038/icb.2011.13
  100. Mitsui, H., T. Inozume, R. Kitamura, N. Shibagaki, and S. Shimada. 2006. Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC class I and class II and elicits superior antitumor immunity. J. Invest. Dermatol. 126: 1804-1812. https://doi.org/10.1038/sj.jid.5700335
  101. Derouazi, M., W. Di Berardino-Besson, E. Belnoue, S. Hoepner, R. Walther, M. Benkhoucha, P. Teta, Y. Dufour, M. C. Yacoub, A. M. Salazar, D. Martinvalet, P. Y. Dietrich, and P. R. Walker. 2015. Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell-Mediated Antitumor Immunity. Cancer Res. 75: 3020-3031.
  102. Ziegler, A. 2008. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv. Drug Deliv. Rev. 60: 580-597. https://doi.org/10.1016/j.addr.2007.10.005
  103. Gump, J. M., R. K. June, and S. F. Dowdy. 2010. Revised role of glycosaminoglycans in TAT protein transduction domain-mediated cellular transduction. J. Biol. Chem. 285: 1500-1507. https://doi.org/10.1074/jbc.M109.021964
  104. Joffre, O. P., E. Segura, A. Savina, and S. Amigorena. 2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12: 557-569. https://doi.org/10.1038/nri3254
  105. Cresswell, P., A. L. Ackerman, A. Giodini, D. R. Peaper, and P. A. Wearsch. 2005. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207: 145-157. https://doi.org/10.1111/j.0105-2896.2005.00316.x
  106. Shen, L., L. J. Sigal, M. Boes, and K. L. Rock. 2004. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21: 155-165. https://doi.org/10.1016/j.immuni.2004.07.004
  107. Brooks, N. A., D. S. Pouniotis, C. K. Tang, V. Apostolopoulos, and G. A. Pietersz. 2010. Cell-penetrating peptides: application in vaccine delivery. Biochim. Biophys. Acta 1805: 25-34.
  108. Tacken, P. J., B. Joosten, A. Reddy, D. Wu, A. Eek, P. Laverman, A. Kretz-Rommel, G. J. Adema, R. Torensma, and C. G. Figdor. 2008. No advantage of cell-penetrating peptides over receptor-specific antibodies in targeting antigen to human dendritic cells for cross-presentation. J. Immunol. 180: 7687-7696. https://doi.org/10.4049/jimmunol.180.11.7687
  109. Skotland, T., T. G. Iversen, M. L. Torgersen, and K. Sandvig. 2015. Cell-penetrating peptides: possibilities and challenges for drug delivery in vitro and in vivo. Molecules 20: 13313-13323. https://doi.org/10.3390/molecules200713313