Browse > Article
http://dx.doi.org/10.14348/molcells.2017.2261

Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots  

Wu, Yunfei (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University)
Yang, Wenzhu (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University)
Wei, Jinhuan (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University)
Yoon, Hyeryung (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University)
An, Gynheung (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University)
Abstract
Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.
Keywords
ammonium; ammonium transporters; nitrate; rice; transcription factor DOF;
Citations & Related Records
연도 인용수 순위
  • Reference
1 An, S.Y., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047.   DOI
2 An, G., Jeong, D.H., Jung, K.H., and Lee, S. (2005a). Reverse genetic approaches for functional genomics of rice. Plant Mol. Biol. 59, 111-123.   DOI
3 An, G., Lee, S., Kim, S.H., and Kim, S.R. (2005b). Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46,14-22.   DOI
4 Bao, A., Liang, Z., Zhao, Z., and Cai, H. (2015). Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. Int. J. Mol. Sci. 16, 9037-9063.   DOI
5 Bloom, A.J., Sukrapanna, S.S., and Warner, R.L. (1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 1294-1301.   DOI
6 Cai, C.H., Wang, J.Y., Zhu, Y.G., Shen, Q.R., Li, B., Tong,Y.P. and Li, Z.S. (2008) Gene structure and expression of high-affinity nitrate transport system in rice roots. J. Int. Plant Biol. 50, 443-451.   DOI
7 Chin, H.G., Choe, M.S., Lee, S.H., Park, S.H., Park, S.H., Koo, J.C., Kim, N.Y., Lee, J.J., Oh, B.G., Yi, G.H., et al. (1999). Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19, 615-624.   DOI
8 Cho, L.H., Yoon, J., Pasriga, R., and An, G. (2016). Homodimerization of Ehd1 is required to induce flowering in rice. Plant Physiol. 170, 2159-2171.   DOI
9 Gu, R., Duan, F.Y., An, X., Zhang, F.S., von Wiren, N., and Yuan, L.X. (2013). Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol. 54, 1515-1524.   DOI
10 Feng, H.M., Yan, M., Fan, X.R., Li, B.Z., Shen, Q.R., Miller, A.J. and Xu, G.H. (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J. Exp. Bot. 62, 2319-2332.   DOI
11 Kim, C.M., Piao, H.L., Park, S.J., Chon, N.S., Je, B.I., Sun, B.Y., Park, S.H., Park, J.Y., Lee, E.J., Kim, M.J., et al. (2004). Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J. 39, 252-263.   DOI
12 Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570.   DOI
13 Jeong, D.H., An, S.Y., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K.S., and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636-1644.   DOI
14 Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132.   DOI
15 Kirk, G.J.D. and Kronzucker, H.J. (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Annals Bot. 96, 639-646.   DOI
16 Kiyomiya, S., Nakanishi, H., Uchida, H., Tsuji, A., Nishiyama, S., Futatsubashi, M., Tsukuda, H., Ishioka, N.S., Watanabe, S., Ito, T., et al. (2001) Real time visualization of $^{13}N$-translocation in rice under different environment conditions using position emitting tracer imaging system. Plant Physiol. 125, 1743-1754.   DOI
17 Lijavetzky, D., Carbonero, P., and Vicente-Carbajosa, J. (2003). Genomewide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol. Biol. 23, 3-17.
18 Kumar, A., Silim, S.N., Okamoto, M., Siddiqi, M.Y., and Glass, A.D.M. (2003). Differential expression of three members of the AMT1 gene family encoding putative high affinity $NH_4^+$ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ. 26, 907-914.   DOI
19 Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., and Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol. J. 9, 826-837.   DOI
20 Kushwaha, H., Gupta, S., Singh, V.K., Rastogi, S., and Yadav, D. (2010). Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol. Biol. Rep. 38, 5037-5053.
21 Loque, D., and von Wiren, N. (2004). Regulatory levels for the transport of ammonium in plant roots. J. Exp. Bot. 55, 1293-1305.   DOI
22 Masumoto, C., Miyazawa, S., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., Kusano, M., Saito, K., Fukayama, H., and Miyao, M. (2010). Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA 107, 5226-5231.   DOI
23 Martin-Rodriguez, A.J., Babarro, J.M., Lahoz, F., Sansón, M., Martin, V.S., Norte, M., Fernandez, J.J. (2015). From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: antifouling profile of alkyl triphenylphosphonium salts. PLoS One 10, e0123652.   DOI
24 Noguero, M., Atif, R.M., Ochatt, S., and Thompson, R.D. (2013). The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci. 209, 32-45.   DOI
25 Suenaga, A., Moriya K., Sonoda Y., Ikeda A., von Wiren N., Hayakawa T., Yamaguchi J., and Yamaya T. (2003). Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol. 44, 206-211.   DOI
26 Ranathunge, K., El-Kereamy, A., Gidda, S., Bi, Y.M., and Rothstein, S.J. (2014). AMT1;1 transgenic rice plants with enhanced $NH_4^+$+ permeability show superior growth and higher yield under optimal and suboptimal $NH_4^+$+ conditions. J. Exp. Bot. 65, 965-979.   DOI
27 Ryu, C.H., You, J.H., Kang, H.G., Hur, J.H., Kim, Y.H., Han, M.J., An, K.S., Chung, B.C., Lee, C.H., and An, G. (2004). Generation of TDNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54, 489- 502.   DOI
28 Ryu, C.H., Lee, S., Cho, L.H., Kim, S.L., Lee, Y.S., Choi, S.C., Jeong, H.J., Yi, J., Park, S.J., Han, C.D., and An, G. (2009). OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)- dependent flowering in rice. Plant Cell Environ. 32, 1412-1427.   DOI
29 Santos, L.A., de Souza, S.R., and Fernandes, M.S. (2012). OsDof25 expression alters carbon and nitrogen metabolism in Arabidopsis under high N-supply. Plant Biotechnol. Rep. 6, 327-337.   DOI
30 Sonoda, Y., Ikeda, A., Saiki, S., von Wiren, N., Yamaya, T., and Yamaguchi, J. (2003). Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3). Plant Cell Physiol. 44, 726-734.   DOI
31 Tabuchi, M., Abiko, T., and Yamaya, T. (2007). Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J. Exp. Bot. 58, 2319-2327.   DOI
32 Tamura, W., Kojima, S., Toyokawa, A., Watanabe, H., Tabuchi- Kobayashi, M., Hayakawa, T., and Yamaya, T. (2011). Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front. Plant Sci. 2, 57.
33 Yanagisawa, S., and Izui, K. (1993). Molecular cloning of two DNAbinding proteins of maize that are structurally different but interact with the same sequence motif. J. Biol. Chem. 268, 16028-16036.
34 Weatherb, M.W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971-974.   DOI
35 Wu, Z., Akter, R., Arirob, W., Juntawong, N., Ma, C., and Deangmanee, P. (2015). Effects of light intensity and the remaining nitrate concentration on the beta-carotene accumulation of a wild Dunaliella salina strain isolated from the saline soil. Microbiology 6, 6233.
36 Xuan, Y.H., Priatama, R.A., Huang, J., Je, B.I., Liu, J.M., Park, S.J., Piao, H.L., Son, D.Y., Lee, J.J., Park, S.H., et al. (2013). Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots. New Phytol. 197, 791-804.   DOI
37 Yanagisawa, S., and Sheen, J. (1998). Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10, 75-89.   DOI
38 Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., and Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under lownitrogen conditions. Proc. Natl. Acad. Sci. USA 101, 7833-7838.   DOI
39 Yang, J., Lee, S., Hang, R., Kim, S.R., Lee, Y.S., Cao, X., Amasino, R., and An, G. (2013). OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J. 73, 566-578.   DOI
40 Yi, J., and An, G. (2013). Utilization of T-DNA tagging lines in rice. J. Plant Biol. 56, 85-90.   DOI
41 Zhang, Y., Verhoeff, N.I., Chen, Z., Chen, S., Wang, M., Zhu, Z., and Ouwerkerk, P.B. (2015). Functions of OsDof25 in regulation of OsC4PPDK. Plant Mol. Biol. 89, 229-242.   DOI
42 Yoon, J., Cho, L.H., Kim, S.L., Choi, H., Koh, H.J., and An, G. (2014). The BEL1‐type homeobox gene SH5 induces seed shattering by enhancing abscission‐zone development and inhibiting lignin biosynthesis. Plant J. 79:717-728.   DOI
43 Yoshida, S., Forno, D.A., Cock, J.H., and Gomez, K.A. (1976). Laboratory Manual for Physiological Studies of Rice. The third edition. International Rice Research Institute; 61-64.
44 Zhang, B., Chen, W., Foley, R.C., Buttner, M., and Singh, K.B. (1995). Interactions between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell 7, 2241-2252.   DOI