• Title/Summary/Keyword: DNA Synthesis

Search Result 770, Processing Time 0.026 seconds

Inactivation of mutS Leads to a Multiple-Drug Resistance in Pseudomonas putida ATCC12633

  • KIM JEONG-NAM;LEE SUNG-JAE;LEE HO-SA;RHIE HO-GUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1214-1220
    • /
    • 2005
  • Decreased porin-mediated outer membrane penetration of hydrophilic antibiotics is a common mechanism of antibiotic resistance in Gram-negative bacteria. This study was undertaken to determine whether a null mutation in Pseudomonas putida would suppress porin synthesis, and therefore reduce the susceptibility of the organism to streptomycin, norfloxacin, and tetracycline. Inverse PCR amplification and double-stranded DNA sequencing were used to identify chromosomal genes carrying TnphoA'-1 inserts. Genome database available was used to identify putative homologue genes, one of which encodes protein with homology to domains of the MutS of P. putida, suggesting a crucial role in the multidrug resistance. Increased resistance to streptomycin, norfloxacin, and tetracycline might be due to accumulation of compensatory mutations. Either no growth or slow growth was observed in P. putida KH1027 when grown in minimal medium containing gluconate, glucose, or citrate; however, it is not clear whether the growth patterns contributed to the multidrug resistance.

Molecular cloning and restriction endonuclease mapping of homoserine dehydrogenase gene (HOM6) in yeast saccharomyces cerevisiae (Aspartate계 아미노산 대사 효모 유전자 HOM6의 cloning 및 구조분석)

  • 김응기;이호주
    • Korean Journal of Microbiology
    • /
    • v.24 no.4
    • /
    • pp.357-363
    • /
    • 1986
  • Synthesis of threonine and methionine in yeast, Saccharomyces cerevisiae shares a common pathway from aspartate via homoserine. HOM6 gene encodes homoserine dehydrogenase (HSDH) which catalyzes the inter-conversion of beta-aspartate semialdehyde and homoserine. The level of HSDH is under methionine specific control. A recombinant plasmid (pEK1: 13.3kb), containing HOM6 gene, has been isolated and cloned into E. coli by complenemtary transformation of a homoserine auxotrophic yeast strain M-20-20D (hom6, trp1, ura3) to a prototrophic M20-20D/pEK1, using a library of yeast genomic DNA fragments in a yeast centromeric plasmid, YCp50(8.0kb). Isolation of HOM6has been primarily confirmed by retransformation of the original yeast strain M20-20D, using the recombinant plasmid DNA which was extracted from M20-20D/pEK1 and subsequently amplified in E. coli. Eleven cleavage sites in the insery (5.3kb) have been localized through fragment analysis for 8 restriction endonucleases; Bgl II(2 site), Bgl II(1), Cla I(3), Eco RI(1), Hind III(2), Kpn I (1), Pvu II(1) and Xho I(1).

  • PDF

Gemcitabine in Treating Patients with Refractory or Relapsed Multiple Myeloma

  • Zheng, Hua;Yang, Fan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9291-9293
    • /
    • 2014
  • Background: Patients with refractory or relapsed multiple myeloma are considered to have a very poor prognosis, and new regimens are needed to improve the outcome. Gemcitabine, a nucleoside antimetabolite, is an analog of deoxycytidine which mainly inhibits DNA synthesis through interfering with DNA chain elongation and depleting deoxynucleotide stores, resulting in gemcitabine-induced cell death. Here we performed a systemic analysis to evaluate gemcitabine based chemotherapy as salvage treatment for patients with refractory and relapsed multiple myeloma. Methods: Clinical studies evaluating the impact of gemcitabine based regimens on response and safety for patients with refractory and relapsed multiple myeloma were identified by using a predefined search strategy. Pooled response rate (RR) of treatment were calculated. Results: In gemcitabine based regimens, 3 clinical studies which including 57 patients with refractory and relapsed multiple myeloma were considered eligible for inclusion. Systemic analysis suggested that, in all patients, pooled RR was 15.7% (9/57) in gemcitabine based regimens. Major adverse effects were hematologic toxicity, including grade 3 or 4 anemia, leucopenia and thrombocytopenia i. No treatment related death occurred with gemcitabine based treatment. Conclusion: This systemic analysis suggests that gemcitabine based regimens are associated with mild activity with good tolerability in treating patients with refractory or relapsed multiple myeloma.

N-Acetylphytosphingosine Enhances the Radiosensitivity of Lung Cancer Cell Line NCI-H460

  • Han, Youngsoo;Kim, Kisung;Shim, Ji-Young;Park, Changsoe;Song, Jie-Young;Yun, Yeon-Sook
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.224-230
    • /
    • 2008
  • Ceramides are well-known second messengers that induce apoptosis in various kinds of cancer cells, and their effects are closely related to radiation sensitivity. Phytoceramides, the yeast counterparts of the mammalian ceramides, are also reported to induce apoptosis. We investigated the effect of a novel ceramide derivative, N-acetylphytosphingosine (NAPS), on the radiosensitivity of NCI-H460 human lung carcinoma cells and its differential cytotoxicity in tumor and normal cells. The combination of NAPS with radiation significantly increased clonogenic cell death and caspase-dependent apoptosis. The combined treatment greatly increased Bax expression and Bid cleavage, but not Bcl-2 expression. However, there was no effect on radiosensitivity and apoptosis in BEAS2B cells, which derive from normal human bronchial epithelium. Cell proliferation and DNA synthesis were significantly inhibited by NAPS in both NCI-H460 and BEAS2B cells, but only the BEAS2B cells recovered by 48h after removal of the NAPS. Furthermore, the NCI-H460 cells underwent more DNA fragmentation than the BEAS2B cells in response to NAPS. Our results indicate that NAPS may be a potential radiosensitizing agent with differential effects on tumor vs. normal cells.

Gemcitabine for the Treatment of Patients with Osteosarcoma

  • Wei, Mei-Yang;Zhuang, Yan-Feng;Wang, Wan-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7159-7162
    • /
    • 2014
  • Background: Patients with recurrent or refractory osteosarcoma are considered to have a very poor prognosis, and new regimens are needed to improve the prognosis in this setting. Gemcitabine, a nucleoside antimetabolite, is an analog of deoxycytidine which mainly inhibits DNA synthesis through interfering with DNA chain elongation and depleting deoxynucleotide stores, resulting in gemcitabine-induced cell death. Here we performed a systemic analysis to evaluate gemcitabine based chemotherapy as salvage treatment for patients with recurrent or refractory osteosarcoma. Methods: Clinical studies evaluating the impact of gemcitabine based regimens on response and safety for patients with osteosarcoma were identified by using a predefined search strategy. Pooled response rates (RRs) of treatment were calculated. Results: In gemcitabine based regimens, 4 clinical studies which included 66 patients with recurrent or refractory osteosarcoma were considered eligible for inclusion. Systemic analysis suggested that, in all patients, pooled RR was 12.1% (8/66) in gemcitabine based regimens. Major adverse effects were hematologic toxicity, including grade 3 or 4 anemia, leucopenia and thrombocytopenia in gemcitabine based treatment. No treatment related death occurred in gemcitabine based treatment. Conclusion: This systemic analysis suggests that gemcitabine based regimens are associated with mild activity with good tolerability in treating patients with recurrent or refractory osteosarcoma.

Enhanced Proliferation and Altered Intracellular Zinc Levels in Early- and Late-Passage Mouse Aorta Smooth Muscle Cells

  • Moon Sung-Kwon;Ha Sang-Do
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.44-47
    • /
    • 2000
  • Cell growth and DNA synthesis were studied from a cultured early- and late- pas- sage mouse aorta smooth muscle cell (MASMC) because the proliferation of vascular smooth muscle cell (VSMC) is a key factor in development of atherosclerosis. In this study, the cells were cultured in fetal bovine serum (FBS) and stimulated by growth factors such as thrombin and platelet-derived growth factor-BB (PDGF-BB). Compared to the number of early-passage MASMC (passage 3 to 9) the number of late-passage MASMC (passage 30 to 40) in a normal serum state was increased 2 fold at Day 1, 3 and 6 in culture, respectively. Incorporation of $[^3H]$ thymidine into DNA induced by serum, PDGF and thrombin in late-passage MASMC was greater than those in early-passage MASMC. We also examined whether intracellular zinc levels would be an aging factor or not. The intracellular zinc level in early- and late-passage MASMC was monitored by using the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide. It is interested that late-passage MASMC increased the intracellular fluorescence level of zinc, more than the early passage MASMC did. The alterations of intracellular zinc level occur concurrently with changes in MASMC proliferation rate during aging. This data suggest that the age-associated changes in zinc concentrations may provide a new in vitro model for the study of smooth muscle cell differentiation.

  • PDF

Bioinformatics Analysis Reveals Significant Genes and Pathways to Targetfor Oral Squamous Cell Carcinoma

  • Jiang, Qian;Yu, You-Cheng;Ding, Xiao-Jun;Luo, Yin;Ruan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2273-2278
    • /
    • 2014
  • Purpose: The purpose of our study was to explore the molecular mechanisms in the process of oral squamous cells carcinoma (OSCC) development. Method: We downloaded the affymetrix microarray data GSE31853 and identified differentially expressed genes (DEGs) between OSCC and normal tissues. Then Gene Ontology (GO) and Protein-Protein interaction (PPI) networks analysis was conducted to investigate the DEGs at the function level. Results: A total 372 DEGs with logFCI >1 and P value < 0.05 were obtained, including NNMT, BAX, MMP9 and VEGF. The enriched GO terms mainly were associated with the nucleoplasm, response to DNA damage stimuli and DNA repair. PPI network analysis indicated that GMNN and TSPO were significant hub proteins and steroid biosynthesis and synthesis and degradation of ketone bodies were significantly dysregulated pathways. Conclusion: It is concluded that the genes and pathways identified in our work may play critical roles in OSCC development. Our data provides a comprehensive perspective to understand mechanisms underlying OSCC and the significant genes (proteins) and pathways may be targets for therapy in the future.

A Rapid and Simple Method for Construction and Expression of a Synthetic Human Growth Hormone Gene in Escherichia coli

  • Roytrakul, Sittiruk;Eurwilaichitr, Lily;Suprasongsin, Chittiwat;Panyim, Sakol
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.502-508
    • /
    • 2001
  • A cDNA, encoding the human growth hormone (hGH), was synthesized based on the known 191 amino acid sequence. Its codon usage was optimized for a high level expression in Escherichia coli. Unique restriction sites were incorporated throughout the gene to facilitate mutagenesis in further studies. To minimize an initiation translation problem, a 624-bp cassette that contained a ribosome binding site and a start codon were fused to the hGH-coding sequence that was flanked between the EcoRI and HindIII sites. The whole fragment was synthesized by an overlapped extension of eight long synthetic oligonucleotides. The four-short duplexes of DNA, which were first formed by annealing and filling-in with a Klenow fragment, were assembled to form a complete hGH gene. The hGH was cloned and expressed successfully using a pET17b plasmid that contained the T7 promoter. Recombinant hGH yielded as much as 20% of the total cellular proteins. However, the majority of the protein was in the form of insoluble inclusion bodies. N-terminal amino acid sequencing also showed that the hGH produced in E. coli contained formyl-methionine. This study provides a useful model for synthesis of the gene of interest and production of recombinant proteins in E. coli.

  • PDF

Diagnostic Agents for Oral and Maxillofacial Diseases (구강 질환 진단용 제제)

  • Kho, Hong-Seop
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.2
    • /
    • pp.181-187
    • /
    • 1999
  • The most important progress in diagnostic sciences is the increased sensitivity and specificity in diagnostic procedures due to the development of newer micromethodologies and increasing availability of immunological and molecular biological reagents. The outcome of researches in this field has already provided DNA probes and antibodies which can be used for diagnosing various kinds of diseases including inherited ones. This development can be also applied to diagnose diseases in oral and maxillofacial regions. Technological advances have yielded highly sensitive test methodologies so that low analyte concentration and small sample volume are no longer limiting factors. Therefore, saliva can be useful test fluid for an array of analytes. Salivary constituents of diagnostic significance include steroid hormones, antibodies, drugs, and tumor markers. Of the proteins present in saliva, viral-specific immunoglobulins are of the greatest diagnostic interest. The development of conjugates and antigens by recombinant DNA technique and peptide synthesis is necessary for clinical application. Several kits developed for the purpose of blood testing should be modified to permit their application to saliva. The final practical outcome of researches in diagnostic sciences will be various diagnostic agents which can be used for detection of bacteria and viruses, screening and diagnosis of diseases, genetic screening for forensic individual identification. For these purposes, collaboration researches and development between institutions and companies are essential.

  • PDF

Molecular Cloning and Tissue-specific Expression of the Melanocortin 4 Receptor Gene from Olive Flounder, Paralichthys olivaceus

  • Lee, Hye-Jung;Kim, Jong-Myoung
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • G protein-coupled receptors (GPCR) constitute the largest superfamily of cell membrane receptors, mediating diverse signal-transduction pathways. The melanocortin 4 receptor (MC4R) has been of interest for its physiological role and size, one of the smallest among the GPCRs, which makes it a good model system for the structural study of GPCRs. To study the molecular structure and tissue-specific expression of MC4R in olive flounder (Paralichthys olivaceus), the full-length MC4R gene was obtained using PCR amplification of genomic DNA as well as cDNA synthesis. Sequence analysis of the gene indicates that 978 bp of the MC4R gene encodes 325 amino acids without introns. Sequence alignment with the MC4Rs from other fish shows the highest degree of identity (96%) between Paralichthys olivaceous and Verasper moseri, followed by Takifugu rubripes and Tetraodon nigroviridis (89%). RNA was isolated from various tissues to examine the tissue distribution of MC4R by using RT-PCR. The results showed major expression of MC4R in the liver, brain, and eye, which is consistent with the expression pattern in other fish belonging to the order Pleuronectiformes.