• Title/Summary/Keyword: DNA Sensor

Search Result 80, Processing Time 0.028 seconds

Preparation of Mesoporous Materials and Thin Films It's Application for DNA Sensor

  • Han, Seung-Jun;Heo, Soon-Young;Park, Keun-Ho;Lee, Soo;Kim, Byung-Kwan;Kim, Jin-Heung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2004
  • Highly ordered pure-silica MCM-41 materials possessing well-defined morphology have been successfully prepared with surfactant used as a template. The fabrication of mesoporous silica has received considerable attention due to the need to develop more efficient materials' for catalysis, separations, and chemical sensing. The surface modified MCM-41 was used as anadsorbent for biomolecules. Silica-supported organic groups and DNA adsorption on surface modified MCM-41 were investigated by FT-IR and UV-Vis spectrometer, respectively. The use of MCM-41 as the modification of electrode surfaces were investigated electrochemical properties of metal mediators with biomolecules. The modified ITO electrodes increased peak currents for a redox process of $[Ru(bpy)_3]^{2+}$ relative to the bare electrode. The electrochemical detection of DNA by cyclic voltammetry when the current is saturated in the presence of the mediator appeared more sensitive due to a higher catalytic current on the MCM-41 supported electrodes modified by carboxylic acid functional groups. The carboxyl or amine groups on the surface of MCM-41 interact and react with the $-NH_2$ groups of guanine and backbone, respectively. Highly ordered mesoporous materials with organic groups could find applications as DNA sensors.

BIOSENSORS IN AGRICULTURAL AND BIOLOGICAL SYSTEMS (농업 및 생물계에서의 바이오 센서)

  • Delwiche, M.J.;Jenkins, D.M.;Tang, X.;Jackson, E.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11a
    • /
    • pp.76-100
    • /
    • 2000
  • A brief general discussion of the nature and function of biosensors is presented. While the primary motivator for biosensor development has been the health-care industries, recent research efforts have spread to problems in agriculture and biological production systems. To illustrate some of the research from our laboratory, three example biosensors and their corresponding applications are presented. The first of these is an immunosensor for measurement of the hormone progesterone during milking as a method to improve reproductive management of dairy herds. The second example is an enzyme sensor for measurement of urea in milk as a menas to determine the efficiency of conversion of input protein to milk protein and, thus, improve nutritional management of dairy herds. The third example is a DNA sensor using polymerase chain reaction to detect pathogenic bacteria in the wash water of fresh and minimally processed fruits and vegetables. The potential for application of biosensors in agriculture, agrobiotechnology, food processing, and environmental monitoring has barely been realized.

  • PDF

An Intelligent Robotic Biological Cell Injection System (바이오 셀 조작용 지능 로봇 시스템)

  • Shim, Jae-Hong;Cho, Young-Im;Kim, Jong-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.411-417
    • /
    • 2004
  • Recently, instruments and systems related on biological technology have been enormously developed. Particularly, many researches for biological cell injection have been carried out. Usually, excessive contact force occurring when the end-effector and a biological cell contact might make a damage on the cell. Unfortunately, the excessive force could easily destroy the membrane and tissue of the cell. In order to overcome the problem, we proposed a new injection system for biological cell manipulation. The proposed injection system can measure the contact force between a pipette and a cell by using a force sensor. Also, we used vision technology to correctly guide the tip of the pipette to the cell. Consequently, the proposed injection system could safely manipulate the biological cells without any damage. This paper presents the introduction of our new injection system and design concepts of the new micro end-effector. Through a series of experiments the proposed injection system shows the possibility of application for precision biological cell manipulation such as DNA operation.

Design and Control of a New Micro End-effector for Biological Cell Manipulation

  • Shim, Jae-Hong;Cho, Sung-Yong;Cho, Young-Im;Kim, Deok-Ho;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2445-2450
    • /
    • 2003
  • Recently, biological technology industry shows great development. Instruments and systems related biological technology have been developed actively. In this paper, we developed a new micro end-effector for biological cell manipulation. The existing micro end-effector for biological cell manipulation has not any force sensing mechanism. Usually, excessive contact force occurring when the end-effector and a cell collide might make a damage on the cell. However, unfortunately, user can not notice the condition in case of using the existing end-effector. In order to overcome we proposed the improved micro end-effector having a force sensing mechanism. This paper presents the design concepts of the new micro end-effector. We carried out calibration of the force sensor and tested the performance of the proposed micro end-effector. Through a series of experiments the new micro end-effector shows the possibility of application for precision biological cell manipulation such as DNA operation

  • PDF

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

Development of Microfluidic Chip for Enrichment and DNA Extraction of Bacteria Using Concanavalin A Coated Magnetic Particles (Concanavalin A가 코팅 된 자성 입자를 이용한 미생물 농축 및 유전자 추출 칩 개발)

  • Kwon, Kirok;Gwak, Hogyeong;Hyun, Kyung-A;Jung, Hyo-Il
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.237-241
    • /
    • 2018
  • The real-time enrichment and detection of pathogens are serious issues and rapidly evolving field of research because of the ability of these pathogens to cause infectious diseases. In general, bacterial detection is accomplished by conventional colony counting or by polymerase chain reaction (PCR) after DNA extraction. As colony counting requires considerable time to cultivate, PCR is an attractive method for rapid detection. A small number of pathogens can cause diseases. Hence, a pretreatment process, such as enrichment is essential for detecting bacteria in an actual environment. Thus, in this study, we developed a microfluidic chip capable of performing rapid enrichment of bacteria and the extraction of their genes. A lectin, i.e., Concanavalin A (ConA), which shows binding affinity to the surface of most bacteria, was coated on the surface of magnetic particles to nonspecifically capture bacteria. It was subsequently concentrated through magnetic forces in a microfluidic channel. To lyse the captured bacteria, magnetic particles were irradiated by a wavelength of 532nm. The photo-thermal effect on the particles was sufficient for extracting DNA, which was consequently utilized for the identification of bacteria. Our device will help monitor the existence of bacteria in various environmental situations such as water, air, and soil.

Microbial Biosensors for Environmental and Food industrial Applications (환경오염과 식품공업 측정용 미생물 바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.213-227
    • /
    • 2002
  • To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based on the biological activity, mechanisms of action and consequences of exposure to a chemical or biological agent of interest. These systems enable the interrogation of more complex biological response and offer the potential to gather higher information content from measuring physiologic and metabolic response. In these articles, same of the recent trends and applications of microbial biosensors in environmental monitoring and for use in food and fermentations have been reviewed. This endeavor presents many technological challenges to fabricate new microbial biosensors for other scientific field.

Aptamer-based optical switch for biosensors (압타머 광학 바이오센서)

  • Lee, Joo-Woon;Cho, Jeong Hwan;Cho, Eun Jeong
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.121-139
    • /
    • 2014
  • In this review, we will discuss aptamer technologies including in vitro selection, signal transduction mechanisms, and designing aptamers and aptazyme for label-free biosensors and catalysts. Dye-displacement, a typical label-less method, is described here which allows avoiding relatively complex labeling steps and extending this application to any aptamers without specific conformational changes, in a more simple, sensitive and cost effective way. We will also describe most recent and advanced technologies of signaling aptamer and aptazyme for the various analytical and clinical applications. Quantum dot biosensor (QDB) is explained in detail covering designing and adaptations for multiplexed protein detection. Application to aptamer array utilizing self-assembled signaling aptamer DNA tile and the novel methods that can directly select smart aptamer or aptazyme experimentally and computationally will also be finally discussed, respectively.

Detection of ${\alpha}-Cyclodextrin$ and E.coli Cell Using Polydiacetylene Supramolecules

  • Lee, Gil-Sun;Choi, Hyun;Lee, Chung-Wan;Ahn, Dong-June;Oh, Min-Kyu;Kim, Jong-Man
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.306-306
    • /
    • 2006
  • We immobilized and patterned PDA vesicles on solid substrate using micro arrayer, which have moieties to react with chemical and biological materials. Immobilized vesicle system was developed since it possesses many advantages in multiple screening, durable stability, and higher sensitivity. We applied polydiacetylene supramolecules to chemical and biological sensors for detection of ${\alpha}-cyclodextrin$ and E.coli cell selectively. This detection method could be applied as DNA chip, protein chip, and cell chip for multiple screening as well as chemical sensor by modifying the functional groups of diacetylene monomer.

  • PDF

Biosensors: a review (바이오센서)

  • Hwang, Kyo-Seon;Kim, Sang-Kyung;Kim, Tae-Song
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.251-262
    • /
    • 2009
  • Biosensors exploit the specific binding between recognition molecule on the biosensor surface and target molecule in analyte and are used in the detection of specific biomolecules such as protein, DNA, cell, virus, etc., with a view towards developing analytical devices. Recently, application field of biosensors have been expanding from diagnosis to biodefense because they can basically serve as high performance devices. This review describes the basic information of biosensors including definition, classification, and operational principle. Moreover, we introduce micro/nano technology-based biosensors with better detection performance than traditional method and their application examples.