Microbial Biosensors for Environmental and Food industrial Applications

환경오염과 식품공업 측정용 미생물 바이오센서

  • 김의락 (계명대학교 자연과학부 화학과)
  • Published : 2002.06.01

Abstract

To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based on the biological activity, mechanisms of action and consequences of exposure to a chemical or biological agent of interest. These systems enable the interrogation of more complex biological response and offer the potential to gather higher information content from measuring physiologic and metabolic response. In these articles, same of the recent trends and applications of microbial biosensors in environmental monitoring and for use in food and fermentations have been reviewed. This endeavor presents many technological challenges to fabricate new microbial biosensors for other scientific field.

Keywords

References

  1. Janata J. Josowicz M, Vanysek P, and DeVaney DM. (1998) Chemical sensors, Anal Chan. 70: 179R-208R https://doi.org/10.1021/a1980010w
  2. Rogers, K R (1998), Biosensor technology for environmental measurement. In: Meyers RA, editor, Encyclopedia of Environmental Analysis and Remediation, p755-768. John Wiley & Sons, New York
  3. Ursula E, and Keller, S (1998), Chemical Sensors and Biosensors of Medical and BiologicalApplications. Wiley-VCH, Weinheim. New York
  4. Riedel, K (1994), Microbial sensors and their application in environment. Exp. Techn. Phys. 40(1), 63-76
  5. Karube, I., T. Matsunaga, S. Mitsuda, and S. Suzuki (1977), Microbial electrode BOD sensor. Biotechn. Bioeng. 19, 1535-1547 https://doi.org/10.1002/bit.260191010
  6. Riedel, K., R. Renneberg, M. KUhn, and F. Scheller (1988), A fast estimation of BOD with microbial sensors. Appl. Microbial. biotechnol. 28, 316-318 https://doi.org/10.1007/BF00250463
  7. Bickerstaff. G. F. (Eds.) (1997), Immobilization of Enzymes and Cells. Humanae Presss. Totowa. NJ
  8. D'Souza, S. F (1999), Immobilized enzymes in bioprocess Curr. Sci. 77, 69-79
  9. Riedel, K (1998), Microbial biosensors based on oxygen electrodes. In: Mulchandani. A., and K. R. Roger. (Eds.), Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 199-223. Humanae Press. Totowa. NJ
  10. Arikawa, Y., K. Ikebukuro, and 1. Karube (1998), Microbial biosensors based on respiratory inhibition. In: Mulchandani. A, and K. R. Roger. (Eds.), Enzyme and Microbial Bioseneors: Techniques and Protocols. pp.225-235. Humanae Press. Totowa. NJ
  11. Simonian, A. L., E. I. Rainina, and J. R. Wild (1998), Microbial biosensors based on potentiometric detection. In: Mulchandani, A. and K. R. Roger (Eds.). Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 237-248. Humanae Press. Totowa. NJ
  12. Rainina, E., E. Efremenco, S. Varfolomeyev, A. L. Simonian, and J. Wild (1996), The Development of a new biosensor based on recombinant E. coli for the detection of organophosphorous neurotoxins. Biosens. Bioelectron. 11, 991-1000 https://doi.org/10.1016/0956-5663(96)87658-5
  13. Patil, A. and S. F. D'Souza (1997), Measurement of in situ halophilic glyceralddehyde-3-phosphate dehydrogenase activity from the permeabilised cells of archaebacterium Haloarcula vallismortis. J. Gen. Appl. Microbiol. 43, 163-167 https://doi.org/10.2323/jgam.43.163
  14. Mulchandani, A. and K. R. Rogers (Eds.) (1998), Enzyme and Microbial Biosensors: Techniques and Protocols. Humanae Press. Totowa. NJ
  15. Svitel, J., O. Curilla, and J. Tkac (1998), Microbial cell-based biosensor for sensing glucose. sucrose or lactose. Biotechnol. Appl. Biochem. 27, 153-158
  16. D'Souza, S. F (2001), Immobilization of biomaterials for biosensor applications. Appl. Biochem. Biotech. (in press) https://doi.org/10.1385/ABAB:96:1-3:225
  17. Kamath, N. and S. F. D'Souza (1992), Immobilization of ureolytic cells through flocculation and adhesion on cotton cloth using polyethylenimine. Enzyme Microb. Technol. 13, 935-938 https://doi.org/10.1016/0141-0229(91)90112-N
  18. Macaskie, L. E., R. M. Empson, A. K. Cheetham, C. P. Grey, and A. J. Skarnulis (1992), Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline $HUO_2PO_4<$/TEX>. Science 257, 782-785 https://doi.org/10.1126/science.1496397
  19. Mulchandani, A., P. Mulchandani, I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorous hydrolase. 1. Potentiometric microbial electrode. Anal. Chem. 70, 4140-4145. https://doi.org/10.1021/ac9805201
  20. Mulchandani, A., I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surfaceexpressed organophosphorous hydrolase. 2. Fiber-optic microbial biosensor. Anal. Chem. 70, 5042-5046 https://doi.org/10.1021/ac980643l
  21. D'Souza, S. F (1989), Immobilized cells: techniques and applications. Indian. J. Microbiol. 29, 83-117
  22. Rao, B. Y. K., S. S. Godbole, and S. F. D'Souza (1988), Preparation of lactose free milk by fermentation using immobilized Saccharomyces jragilis. Biotechnol. Lett. 10, 427-430 https://doi.org/10.1007/BF01087444
  23. Joshi, M. S., L. R. Gowda, L. C. Katwa, and S. G. Bhat (1989), Permeabilization of yeast cells (Kluyveromyves jragilis) to lactose by digitonin. Enzyme Microb. Technol.11, 439-449 https://doi.org/10.1016/0141-0229(89)90140-3
  24. Riedel, K. and F. Scheller (1987), Inhibitor-treated microbial sensor for the selective determination of glutamic acid. Analyst 112, 341-342 https://doi.org/10.1039/an9871200341
  25. Riedel, K., R. Renneberg, and F. Scheller (1990), Adaptable microbial sensor. Anal. Lett. 23, 757-770 https://doi.org/10.1080/00032719008052480
  26. Fleschin, S., C. Bala., A. A. Bunaciu., A. Panait., and H. Y. Aboul-Enein (1998), Enalapril microbial biosensor. Prep. Biochem. biotechnol. 28, 261-269. https://doi.org/10.1080/10826069808010140
  27. Noshi, N. T. and S. F. D'Souza (1999), Immobilization of activated sludge for the degradation of phenol. J. Environ. Sci. Health Part A Environ. Sci. Engng 34, 1689-1700 https://doi.org/10.1080/10934529909376921
  28. iu, J., L. Bjornsson, and B. Mattiasson (2000), Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens. Bioelectron. 14, 883-893 https://doi.org/10.1016/S0956-5663(99)00064-0
  29. Peter, J., W. Buchinger, F. Karner, and W. Hampel (1997), Characteristics of a microbial assay for the detection of halogenated hydrocarbons using cells of an actinomycetes-like organism as a biological component. Acta Biotechnol. 17, 123-130 https://doi.org/10.1002/abio.370170204
  30. Nomura, Y., K. Ikebukuno, K. Yokoyama, T. Takeuchi, Y. Arikawa, S. Ohno, and I. Karube (1994), A novel microbial sensor for anionic surfactant determination. Anal. Lett. 27, 3095-3108 https://doi.org/10.1080/00032719408000313
  31. Reshetilov, A. N., D. A. Efremov, P. V. Iliasov, N. I. Kukushkin, R. Greene, T. Leathers, and A. M. Boronin (1998), Effects of high oxygen concentrations on microbial biosensor signals. Hyperoxygenation by means of perfluorodecaline. Doklady Akademii Nauk 358, 833-835
  32. D'Souza, S. F. and J. S. Melo (1991), A method for the preparation of co-immobilizates by adhesion using polyethylenimine. Enzyme Microb. Technol. 13, 508-511 https://doi.org/10.1016/0141-0229(91)90011-X
  33. Burlage, R., and C. T. Kuo (1994), Living biosensors for the management and manipulation of microbial consortia. Annu. Rev. Microbiol. 48, 291-309 https://doi.org/10.1146/annurev.mi.48.100194.001451
  34. Matrubutham, U. and G. S. Sayler (1998), Microbial biosensor based on optical detection. In: Mulchandani, A, and K. R. Roger (Eds.), Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 249-256. Humanae press. Totowa. NJ
  35. Meighen, E. A (1994), Genetics of bacterial bioluminescence. Annu. Rev. Genet. 28, 117-139 https://doi.org/10.1146/annurev.ge.28.120194.001001
  36. Heitzer, A., K. Malachowsky, J. Thonnard, P.Bienkowski, D. White, and G. Sayler (1994), Optical biosensor for the environmental on-line monitoring of naphthalene and salicylate bioavaiiabiJity with an immobilised bioluminescent catabolic reporter bacterium. Appl. Environ. Microbiol. 60, 1487-1494
  37. Ripp, S., D. E. Nivens, C. Werner, and G. S. Sayler(2000), Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl. Microbiol. Biotechnol. 53, 736-741 https://doi.org/10.1007/s002530000343
  38. Georgopoulos, C., K. Liberek, M. Zyliez, and D. Ang(1994), Properties of the heat shock proteins of Escherichia coil and the autoregulation of the heat shock response. In: Mortimoto, R. I., A. Tissieres, C. Georgopoulos (Eds.), The Biologv of Heat Shock Proteins and Molecular Cheperons. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. NY, pp. 209-250
  39. Benlsrael, O., H. Benlsrael, and S. Ulitzer (1998), Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl. Environ. Microbiol. 64, 4346-4352
  40. Kim, U. R., K. S. Roh, Y. D. Ha, Y. S. Seuk, and Y.S. Park (l994), The studies for the malate tissue biosensor using malate dehydrogenase (decarboxylating) in the bundle sheath cell of the com leaf. Kor. J. Biotechnol. Bioeng. 9, 319-324
  41. Kim, U. R., K. J. Nam, and S. M. Choi (1992), The development of arginine-selective membrane electrode using tissue slices of the rose of sharon. J. Kor. Chem. Soc. 36, 117-139
  42. Bae, J. H., S. M. Choi, D. J. Lim, and U. R. Kim(1993), The biosensor for L-glutamin using tissue slices of wistar rat. J. Kor. Chem. Soc. 38, 736-741
  43. Mazzei, F., F. Botre, G. Lorenti, G. Simonetti, F. Porcelli, G. Scibona, and C. Botre (1995), Plant tissue electrode for the determination of atrazine. Anal. Chim. Acta 316, 79-82 https://doi.org/10.1016/0003-2670(95)00343-X
  44. Shoji, R., Y. Sakai, A. Sakoda, and M. Suzuki (2000), Development of a rapid and sensitive bioassay device using human cells immobilized in macroporous microcarriers for the on-site evaluation of environmenttal water. Appl. Microbiol. Biotechnol. 54, 432-438 https://doi.org/10.1007/s002530000393
  45. Kumar, S. D., A. V. Kulkarni, R. G. Dhaneshwar, and S. F. D'Souza (1992), Cyclic voltametric studies at the glucose oxidase enzyme electrode. Bioelectrochem. Bioenerg. 27, 153-160 https://doi.org/10.1016/0302-4598(92)87039-W
  46. Loranger, C. and R. Carpentier (1994), A fast assay for phytotoxicity measurements using immobilized photosynthetic membranes. Biotechnol. Bioengng 44, 178-183 https://doi.org/10.1002/bit.260440206
  47. Marolia, K. Z. and S. F. D'Souza (1999), Enhancement of the lysozyme activity of the hen egg white foam matrix by cross-linking in the presence of N-acetyl glucosamine. J. Biochem. Biophys. Methods 39, 115-117 https://doi.org/10.1016/S0165-022X(98)00021-9
  48. D'Souza, S. F (1983), Osmotic stabilisation of mitochondria using chemical cross-linkers. Biotechnol. Bioengng. 25, 1661-1664 https://doi.org/10.1002/bit.260250619
  49. D'Souza, S. F. and K. Z. Marolia (1999), Stabilization of Micrococcus lysodeikticus cells towards lysis by lysozyme using glutaraldehyde: application as a novel biospecific ligand for the purification of lysozyme. Biotechnol. Tech. 13, 375-378 https://doi.org/10.1023/A:1008979709047
  50. Ramakrishna, S. V. and R. S. Prakasham (1999), Microbial fermentation with immobilized cells. Curro Sci. 77, 87-100
  51. Peter, J., W. Hutter, W. Stollnberger, and W. Hampel (1996), Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens. Bioelectron. 11, 1215-1219 https://doi.org/10.1016/0956-5663(96)88086-9
  52. Koenig, A., C. Zaborosch, and F. Spener (1997), Microbial sensors for PAH in aqueous solution using solubilizers. In: Gottlieb, J., H. Hotzl, K. Huck, and R. Niessner (Eds.), pp. 203-206. Field Screening Europe Kluwer Academic Publishers. The Netherland.Fabrication of oxygen electrode arrays and their incorporation into sensors for measuring biochemical oxygen demand. Anal. Chem. Acta 357, 41-49
  53. Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators B 67, 142-148 https://doi.org/10.1016/S0925-4005(00)00404-4
  54. Rouillon, R., M. Sole, R. Carpentier, and J. L. Marty(1995), Immobilization of thylokoids in polyvinyl alcohol for the detection of herbicides. Sens. Actuators. 27, 477-479 https://doi.org/10.1016/0925-4005(94)01645-X
  55. Ulbricht, M. and A Papra (1997), Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, crosslinking, and covalent binding. Enzyme Microb. Technol. 20, 61-68 https://doi.org/10.1016/S0141-0229(96)00085-3
  56. D'Urso, E. M. and G. Fortier (1996), Albumin-poly (ethylene glycol) hydrogel as matrix for enzyme immobilization: biochemical characterization of crosslinked acid phosphatase. Enzyme Microb. Technol. 18, 482-488 https://doi.org/10.1016/0141-0229(95)00153-0
  57. Schmidt, A., G. C. Standfuss, and U. Bilitewski (1996), Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosens. Bioelectron. 11, 1139-1145 https://doi.org/10.1016/0956-5663(96)82336-0
  58. Peter, J., W. Hutter, W. Stollnberger, F. Kamer, and W. Hampel (1997), Semicontinuous detection of 1,2dichloroethane in water samples using Xanthobacter autrophicus GJ 10 encapsulated in chitosan beads. Anal. Chem. 69, 2077-2079 https://doi.org/10.1021/ac9611125
  59. Smidsord, o. and G. Skjac-Break (1990), Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71-78 https://doi.org/10.1016/0167-7799(90)90139-O
  60. Gupte, A. and S. F. D'Souza (1999), Stabilization of alginate beads using radiation polymerized polyacrylamide. J. Biochem. Biophys. Methods 40, 39-44 https://doi.org/10.1016/S0165-022X(99)00015-9
  61. Miranda, C. and S. F. D'Souza (1988), Clarification of pectin using pectinolytic fungi immobilized in open pore gelatin block. J. Microbiol. Biotechnol. 3, 60-65
  62. Katrlik, J., R. Brandsteter, J. Svore, M. Rosenberg, and S. Miertus (1997), Mediator type of glucose microbial biosensor based on Aspergillus niger. Anal. Chim. Acta. 356, 217-224 https://doi.org/10.1016/S0003-2670(97)00524-2
  63. Melo, J. S. and S. F. D'Souza (1999), Simultaneous filtration and immobilization of cells from a flowing suspension using a bioreactor containing polyethylenimine coated cotton threads: application in the continuous inversion of sucrose syrups. World J. Microbiol. Biotechnol. 15, 25-27 https://doi.org/10.1023/A:1008877126664
  64. Nandakumar, R., and B. Mattiasson (1999), A microbial biosensor using Psuedomonas putida cells immobilized in an expanded bed reactors for the on-line monitoring of phenolic compounds. Anal. Lett. 32, 2379-2393 https://doi.org/10.1080/00032719908542976
  65. Mattiasson, B. (1982), Biospecific reversible immobilization. A method for introducing labile structures into analytical systems. Appl. Biochem. Biotechnol. 7, 121-125 https://doi.org/10.1007/BF02798633
  66. D'Souza, S. F. and A. Deshpande (2001), Simultaneous purification and reversible immobilization of D amino acid oxidase from Trigonopsis variabilis. Appl. Biochem. Biotechnol. (in press) https://doi.org/10.1385/ABAB:95:2:083
  67. Nikolelis, D., U. Krull, J. Wang, and M. Mascini (Eds.)(1998), Biosensors for direct monitoring of environmental pollutants in Field. Kluwer Academic, London
  68. Rogers, K. R. and C. L. Gerlach (1999), Update on envi-506A
  69. Rogers, K. R. (1998), Biosensor technology for environmental measurement. In: Meyers, R. A. (Ed.). Encyclopedia of Environmental Analysis and Remediation, 755-768. Wiley. Chichester. UK
  70. Bilitewski, U. and A. P. F. Turner (Eds.) (2000), Biosensors for Environmental Monitoring. Harwood Academic, Amsterdam
  71. Marty, J. L., D. Olive, and Y. Asano (1997), Measurement of BOD-correlation between 5-day BOD and commercial BOD biosensor values. Environ. Technol. 18, 333-337 https://doi.org/10.1080/09593331808616544
  72. Karube, I., T. Matsunaga, S. Mitsuda, and S. Suzuki(1977), Microbial electrode BOD sensors. Biotechnol. Bioengng. 19, 1535-1545 https://doi.org/10.1002/bit.260191010
  73. Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (1999), Arxula adeninivorans LS3 as suitable biosensor for measurement of biodegradable substances in salt water. J. Chem. Technol. Biotechnol. 73, 385-388 https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<385::AID-JCTB975>3.0.CO;2-B
  74. Chan, C., M. Lehmann, K. Tag, M. Lung, G. Kunze, K. Riedel, R. Grundig, and R. Renneberg (1999), Measurement of biodegradable substances using the salt tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate(PCS). Part I. Construction and characterization of the microbial sensor. Biosens. Bioelectron. 14, 131-138 https://doi.org/10.1016/S0956-5663(98)00128-6
  75. Lehmann, M., C. Chan, A. Lo, M. Lung, K. Tag, G. Kunze, K. Riedel. B. Grundig, and R. Renneberg (1999), Measuremant of biodegradable substances using the salt tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate(PCS). Part II. Application of the novel biosensor to real samples of coastal and island regions. Biosens. Bioelectron. 14, 295-302 https://doi.org/10.1016/S0956-5663(98)00128-6
  76. Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators. B 69, 142-148 https://doi.org/10.1016/S0925-4005(00)00404-4
  77. Chee, G. I., Y. Nomura, and I. Karube (1999), Biosensor for the estimation of low biochemical oxygen demand. Anal. Chim. Acta. 379, 185-191 https://doi.org/10.1016/S0003-2670(98)00680-1
  78. Yang, Z., H. Suzuki, S. Sasaki, and I. Kurube (1996), Disposable sensor for biochemical oxygen demand. Appl.Microbiol. Biotechnol. 46, 10-14 https://doi.org/10.1007/s002530050776
  79. Neudoerfer, F. and R. L. A. Meyer (1997), A microbial biosensor for the microscale measurement of bioavailable organic carbon in oxic sediments. Marine Ecol. Prog. Ser. 147, 295-300
  80. Preininger, C., I. Klimant, and O. S. Wolfbeis (1994), Optical fiber sensor for biological oxygen demand. Anal. Chem. 66, 1841-1846
  81. Weppen, P., I. Ebens, B. G. Muller, and D. Schuller(1991), On-line estimation of biological oxygen demand using direct calorimetry on surface attached microbial cultures. Thermochim. Acta. 193, 135-143 https://doi.org/10.1016/0040-6031(91)80180-Q
  82. Hutter, W., J. Peter, H. Swoboda, W. Hampel, E. Rosenberg, D. Kramer, and R. Kellner (1995), Development of microbial assay for chlorinated and brominated hydrocarbons. Anal. Chim. Acta. 306, 237-241 https://doi.org/10.1016/0003-2670(94)00679-G
  83. Peter, J., W. Hutter, W. Stollnberger, and W. Hampel(1996), Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens. Bioelectron. 11, 1215-1219 https://doi.org/10.1016/0956-5663(96)88086-9
  84. Koenig, A., C. Zaborosch, A. Muscat, K. D. Vorlop, and F. Spener (1996), Microbial sensors for naphthalene using Sphingomonas sp. Bl or Pseudomonas fluorescens WW4. Appl. Microbiol. Biotechnol. 45, 844-850 https://doi.org/10.1007/s002530050772
  85. Ignatov, O. V., S. M. Rogatcheva, S. V. Kozulin, and N. A. Khorkina (1997), Acrylamide and acrylic acid determination using respiratory activity of microbial cells. Biosens. Bioelectrol1. 12, 105-111 https://doi.org/10.1016/S0956-5663(97)87056-X
  86. Ignatov, O. V., S. M. Rogatcheva, O. V. Vasileva, and V. V. Ignatov (1996), Selective determination of acrylonitrile, acrylamide and acrylic acid in waste water using microbial cells. Resources Conserv. Recycl. 18, 69-78 https://doi.org/10.1016/S0921-3449(96)01169-X
  87. Palchetti, I., A. Cagnini, M. Del Carlc, C. Coppi, M. Mascini, A. P. F. Turner (1997), Determination of acetylcholinesterase pesticides in real samples using a disposable biosensor. Anal. Chim. Acta. 337, 315-321 https://doi.org/10.1016/S0003-2670(96)00418-7
  88. Mulchandani, A., P. Mulchandani, W. Chen, J. Wang, and L. Chen (1999), Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorous hydrolase. Anal. Chem. 71, 2246-2249 https://doi.org/10.1021/ac9813179
  89. Sundenmeyer-Klinger, H., W. Meyer, B. Warninghoff, and E. Bock (1984), Membrane bound nitrite oxidoreductase of nitrobacter: evidence for a nitrate reductase system. Arch. Microbiol. 140, 153-158 https://doi.org/10.1007/BF00454918
  90. Reshetilov, A. N., P. V. Iliasov, H. J. Knackmuss, and A. M. Boronin (2000), The nitrite oxidising activity of Nitribacter strains as a base of microbial biosensor for nitrite detection. Anal. Lett. 33, 29-41 https://doi.org/10.1080/00032710008543034
  91. Ikebukuro, K., M. Honda, K. Nakanishi, Y. Nomura, Y. Masuda, K. Yokoyama, Y. Yamauchi, and I. Karube (1996), Flow-type cyanide sensor using an immobilized microorganism. Electroanalysis. 8, 876-879 https://doi.org/10.1002/elan.1140081005
  92. Koenig, A., J. Secker, K. Riedel, and A. Metzger (1997), A microbial sensor for measuring inhibitors and substrates for nitrification in wastewater. Am. Lab, 12-21
  93. Rouillon, R., M. Tocabens, and R. Carpentier (1999), A photochemical cell for detecting pollutant-induced effects on the activity of immobilized cyanobacterium Synechococcus sp. PCC 7942. Enzyme Microb. Technol. 25, 230-235 https://doi.org/10.1016/S0141-0229(99)00033-2
  94. Pavlou, A. K. and A. P. F. Turner (2000), Sniffing out the truth: clinical diagnosis using the electronic nose. Clin. Chem. Lab. Med. 38, 99-112 https://doi.org/10.1515/CCLM.2000.016
  95. Magan, N. and P. Evans (2000), Volatiles as an indicator of fungal activity and differentiation between species and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored Prod. Res. 36, 319-340 https://doi.org/10.1016/S0022-474X(99)00057-0
  96. Ukeda, H., G. Wagner, U. Bilitewski, and R. D. Schmid(1992), Flow injection analysis of short-chain fatty acidsin milk based on a microbial electrode. J. Agric. Food Chem. 40, 2324-2327 https://doi.org/10.1021/jf00023a053
  97. Ukeda, H., G. Wagner, G. Weis, M. Miller, H. Klostermeyer, and R. D. Schmid (1992), Application of a microbial sensor for determination of short-chain fatty acids in raw milk samples. Z. Lebensm Uniters Forseh. 195, 1-2 https://doi.org/10.1007/BF01197829
  98. Ukeda, H., Y. Fujita, M. Sawamura, and H. Kusunose(1994), Determination of short-chain fatty acids in raw milk using a microbial sensor and the relationshin with milk quality. Anal. Sci. 10, 683-685 https://doi.org/10.2116/analsci.10.683
  99. Schmidt, A., G. C. Standfuss, and U. Bilitewski (1996), Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosens.Bioelectron. 11, 1139-1145 https://doi.org/10.1016/0956-5663(96)82336-0
  100. Liu, B., Y. Cui, and J. Deng (1996), Studies on microbial biosensor for DL-phenylalanine and its dynamic response process. Anal. Lett. 29, 1497-1515 https://doi.org/10.1080/00032719608001500
  101. Endo, H., A. Kamata, M. Hoshi, T. Hayashi, and E. Watanabe (1995), Microbial biosensor system for rapid determination of vitamin B-6. J. Food Sci. 60, 554-557 https://doi.org/10.1111/j.1365-2621.1995.tb09825.x
  102. Matsumoto, T., M. Fukaya, S. Akita, Y. Kawamura, and Y. Ito (1996), Determination of sulfite in various foods by the microbial biosensor method. J. Jpn. Soc. Food Sci. Technol. 43, 731-734 https://doi.org/10.3136/nskkk.43.731
  103. Matsumoto, T., M. Fukaya, Y. Kanegae, S. Akita, Y. Kawamura, and Y. Ito (1996), Comparison of the microbial biosensor method with the modified Rankine's method for determination of sulfite in fresh and dried vegetables including sulfur compounds. J. Jpn. Soc. Food Sci. Technol. 43, 716-718 https://doi.org/10.3136/nskkk.43.716
  104. Scheper, T. H. and F. Lammers (1994), Fermentation monitoring and process control. Curro Opin. Biotechnol. 5, 187-191 https://doi.org/10.1016/S0958-1669(05)80034-5
  105. Munkittrick, K. R., E. A. Power, and G. A. Sergy(1991), The relative sensitivity of Microtox. Daphnid. Rainbow trout, fat-head Minnow acute lethality tests. Environ. Toxicol. Water Qual. Int. J. 6, 35-62 https://doi.org/10.1002/tox.2530060105
  106. Van Dyk. T. K., W. R. Majarian, K. B. Konstantinov, R. M. Young, P. S. Dhurjati, and R. La Rossa (1994), Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414-1420
  107. Gu, M. B., P. S. Dhurjati, T. K. Van Dyk, and A LaRossa (1996), A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol. Prog. 12, 393-397 https://doi.org/10.1021/bp9600142
  108. Rupani, S. P., M. B. Gu, K. B. Konstantinov, P. S. Dhurjati, T. K. Van Dyk, and R. A. LaRossa (1996),Characterization of the stress response of a bioluminescent biological biosensor in batch and continuous cultures. Biotechol. Prog. 12, 387-392 https://doi.org/10.1021/bp960015u
  109. Selifonova, O., R. Bulgare, and T. Barkay (1993), Bioluminescent sensor for the detection of Hg(II) in the environment. Appl. Environ. Microbial. 59, 3083-3090
  110. Erbe, J. L, A. C. Adams, K. B. Raylor, and L. M. Hall(1996), Cyanobacteria carring an smt: lux transcriptional fusion as biosensors for detection of heavy metal cations. J. Ind. Microbiol. 17, 80-83 https://doi.org/10.1007/BF01570047
  111. Cai, J. and M. S. DuBow (1997), Use of luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation 8, 105-111 https://doi.org/10.1023/A:1008281028594
  112. Peitzsch, N., G. Eberz, and D. H. Nies (1998), Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453-458
  113. Ramanathan, S., W. Shi, B. P. Rosen, and S. Daunert (1997), Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal. Chern. 69, 3380-3384 https://doi.org/10.1021/ac970111p
  114. Tauriainen, S., M. Karp, W. Chang, and M. Virta (1998), Luminescent bacterial sensor for cadmium and
  115. BenIsrael, O., H. BenIsrael, and S. Ulitzer (1998), Identification and quantification of toxic chemicals by use of Escherichia coil carrying lux genes fused to stress promoters. Appl. Environ. Microbiol. 64, 4346-4352
  116. Paton, G. I., E. A. S. Rattray, C. D. Campbell, M. S. Cresser, L. A. Glover, J. C. L. Meeussen, and K. Killham (1997), Use of genetically modified microbial biosensors for soil ecotoxicity testing. In: Pankhurst, c., B. Doube, and V. Gupta (Eds.), Biological Indicators of Soil Health and Sustainable Productivity. CAB intematonal. pp. 397-418. Wellesboume. UK
  117. Preston, S., N. Coad, J. Townend, K. Killham, and G. I. Paton (2000), Biosensing the acute toxicity of metal interaction: are they additive, synergistic, or antagonistic? Environ. Toxicol. Chem. 19, 775-780 https://doi.org/10.1897/1551-5028(2000)019<0775:BTATOM>2.3.CO;2
  118. Brown, J. S., E. A. S. Rattray, G. I. Paton, G. Reid, I. Caffoor, and K. Killham (1996), Comparative assessment of the toxicity of a papermill effluent by respirometry and luminescence-based bacterial assay. Chemosphere. 32, 1553-1561 https://doi.org/10.1016/0045-6535(96)00062-8
  119. Bundy, J. G., J. L. Wardell, C. D. Campbell, K. Killham, and G. I. Paton (1997), Application of bioluminescence-based microbial biosensors to the ecotoxicity assessment of organotins. Lett. Appl. Microbiol. 25, 353-358 https://doi.org/10.1046/j.1472-765X.1997.00231.x
  120. Fabricant, J. D., Jr. J. H. Chalmer, and M. W. Bhadbury (1995), Bio1uminiscent strain of E. coli for the assay of biocides. Bull. Environ. Contam. Toxicol. 54, 90-95 https://doi.org/10.1007/BF00196274
  121. Shaw, J., F. Dane, D. Geiger and J. Kloepper (1992), Use of bioluminescence for the detection of genetically engineered microorganisms released in the environment. Appl. Environ. Microbiol. 58, 267-273
  122. Kobatake, E., T. Niimi, T. Haruyama, Y. Ikariyama, and M. Aizawa (1995), Biosensing of benzene derivatives in the environment by luminescent Escherichia coli. Biosens. Bioelectron. 10, 601-605 https://doi.org/10.1016/0956-5663(95)96936-S
  123. Hollis, R. P., K. Killham, and L. A. Glover (2000), Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol. 66, 1676-1679 https://doi.org/10.1128/AEM.66.4.1676-1679.2000
  124. Unger, A., R. Tombolini, L. Molbak, and J. K. Jansson (1999), Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual grp-luxAB marker system. Appl. Environ. Microbiol. 65, 813-821
  125. Marines, F. (2000), On-line monitoring of growth of Escherichia coli in batch cultures by bioluminescence. Appl. Microbiol. Biotechnol. 53, 536-541 https://doi.org/10.1007/s002530051653
  126. Gibson, T. D. (1999), Biosensors: the stability problem. Analusis 27, 630-638 https://doi.org/10.1051/analusis:1999270630
  127. Ogawa, J., S. Shimizu (1999), Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol. 17, 13-21 https://doi.org/10.1016/S0167-7799(98)01227-X
  128. Srinivasan, M. C. (1994), Microbial biodiversity and its relevance to screening for novel industrially useful enzymes. Curro Sci. 66, 137-140
  129. Rella, R., D. Ferrara, G. Barison, L. Doretti, and S. Lora (1996), High temperature operating biosensor for the determination of phenol and related compounds. Biotechnol. Appl. Biochem. 24, 83-88
  130. Jeffries, C., N. Pasco, K. Baronian, and L. Gorton paste amperometric biosensor L-glutamate dehydrogenase. Biosens. Bioelectron. 12, 225-232 https://doi.org/10.1016/S0956-5663(97)85340-7
  131. Arnold, F. H. (1998), Enzyme engineering reaches the boiling point. Proc. Natl. Acad. Sci. 95, 2035-2036 https://doi.org/10.1073/pnas.95.5.2035
  132. Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, T. Lonhienne, M. A. Meuwis, and G. Feller (2000), Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107 https://doi.org/10.1016/S0167-7799(99)01413-4
  133. Nandakumar, R., and B. Mattiasson (1999), A low temperature microbial biosensor using immobilized psychrophilic bacteria. Biotechnol. Tech. 13, 689-693 https://doi.org/10.1023/A:1008963730069
  134. Nies, D. H. (2000), Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4, 77-82 https://doi.org/10.1007/s007920050140
  135. Pazirandeh, M., L. A. Chrisey, J. M. Mauro, J. R. Campbell, and B. P. Gaber (1995), Expression of the Neurospora crassa metallothionein gene in Escherichiacoli and its effect on heavy-metal uptake. Appl. Microbiol. Biotechnol. 43, 1112-1117 https://doi.org/10.1007/BF00166934
  136. Cruz, N., S. L. LeBorgne, G. Ghavez-Hernandez, G. Gosset, F. Valle, and F. Bolivar (2000), Engineering the Escherichia coli outer membrane protein OmpC for metal bioadsorption. Biotechnol. Lett. 22, 623-629 https://doi.org/10.1023/A:1005637920766
  137. Brim, H., S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly (2000), Engineering Deinococcus radiodurans for metalremediation in radioactive mixed waste environments. Nat. Biotechnol. 18, 85-90 https://doi.org/10.1038/71986
  138. D'Souza, S. E., W. Altekar, and S. F. D'Souza (1997), Adaptive response of Haloferax mediterranei to low concentration of NaCl(<20%) in the growth medium. Arch. Microbiol. 168, 68-71 https://doi.org/10.1007/s002030050471
  139. Tag, K., M. Lghmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators B 67, 142-148 https://doi.org/10.1016/S0925-4005(00)00404-4
  140. Sousa, S., C. Duffy, H. Weitz, A. L. Glover, E. Bar, R. Henkler, and K. Killham (1998), Use of a lux-modified bacterial biosensor to dentify constraints to bioremediation of btex-contaminated sites. Environ. Toxicol. Chem. 17, 1039-1045 https://doi.org/10.1897/1551-5028(1998)017<1039:UOALMB>2.3.CO;2
  141. McGrath, S. P., B. Knight, K. Killham, S. Preston, and G. I. Paton (1999), Assesment of the toxicity of metals in soils amended with servage sludge using a chemical speciation technique and a lux-based biosensor. Environ. Toxicol. Chem. 18, 659-663 https://doi.org/10.1897/1551-5028(1999)018<0659:AOTTOM>2.3.CO;2
  142. Neudoerfer, F., and R. L. A. Meyer (1997), A microbial biosensor for the microscale measurement of bioavailable organic carbon in oxic sediments. Marine Ecol. Prog. Ser. 147, 295-300 https://doi.org/10.3354/meps147295
  143. Riedel, K., A. V. Naumov, A. M. Boronin, L. A. Golovleva, H. J. Stein, and F. Scheller (1991), Microbial sensors for determination of aromatics and their chlorodervatives: determination of 3-chlorobenzoate using a pseudomonas-containing biosensor. Appl. Microbial. Biotechnol. 35, 559-562 https://doi.org/10.1007/BF00169615
  144. Matsunaga, T., S. Suzuki, and R. Tomoda (1984), Photomicrobial sensor for selective determination of phosphate. Enzyme Microb. Technol. 6, 355-357 https://doi.org/10.1016/0141-0229(84)90048-6
  145. Suzuki, S., and I. Karube (1987), An amperornetric sensor for carbondioxide based on immobilised bacteria utilising carbondioxide. Anal. chim. Acta 199, 85-91 https://doi.org/10.1016/S0003-2670(00)82799-3
  146. Karube, I., Y. Wang, E. Tamiya, and M. Kawarai (1987), Microbial electrode sensor for vitamin-Bl2. Anal. Chim. Acta 199, 93-97 https://doi.org/10.1016/S0003-2670(00)82800-7
  147. Renneberg, R., K. Riedel, and F. Scheller (1985), Microbial sensor for aspartame. Appl. Microbiol. Biotechnol. 21, 180-181 https://doi.org/10.1007/BF00295116
  148. Di Paolantonio, C. L., and G. A. Rechnitz (1982), Induced bacterial electrode for the potentiometric measurement of tyrosine. Anal. Chim. Acta 141, 1-13 https://doi.org/10.1016/S0003-2670(01)95305-X
  149. Di Paolantonio, C. L., and G. A. Rechnitz (1983), Stabilized bacteria-based potentiometric electrode for pyruvate. Anal. Chim. Acta 148, 1-12 https://doi.org/10.1016/S0003-2670(00)85146-6
  150. Webb, O. F., P. R Bienkowski, U. Matrubutham, F. A. Evans, A. Heitzer, and G. S. Sayler (1997), Kinetics and response of a Psuedomonas fluorescence HK44 biosensor. Biotechnol. Bioengng 54, 491-502 https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<491::AID-BIT8>3.0.CO;2-9
  151. Sayler, G. S., C. D. Cox, R. BurJage, S. Ripp, D. E. Nivens, C. Werner, Y. Ahn, and U. Matrubutham (1999), Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. In: Fass, R., Y. Flashner, S. Reuveny (Eds), Novel Approaches for Bioremediation of Organic Pollution. Kluwer Academic Plenum Press. New York. pp. 241-254