Browse > Article

Microbial Biosensors for Environmental and Food industrial Applications  

김의락 (계명대학교 자연과학부 화학과)
Publication Information
KSBB Journal / v.17, no.3, 2002 , pp. 213-227 More about this Journal
Abstract
To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based on the biological activity, mechanisms of action and consequences of exposure to a chemical or biological agent of interest. These systems enable the interrogation of more complex biological response and offer the potential to gather higher information content from measuring physiologic and metabolic response. In these articles, same of the recent trends and applications of microbial biosensors in environmental monitoring and for use in food and fermentations have been reviewed. This endeavor presents many technological challenges to fabricate new microbial biosensors for other scientific field.
Keywords
microbial biosensors; immobilization; permeabilisation; DNA technology; metabolic engineering food biosensors; environmental biosensors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nomura, Y., K. Ikebukuno, K. Yokoyama, T. Takeuchi, Y. Arikawa, S. Ohno, and I. Karube (1994), A novel microbial sensor for anionic surfactant determination. Anal. Lett. 27, 3095-3108   DOI   ScienceOn
2 Matrubutham, U. and G. S. Sayler (1998), Microbial biosensor based on optical detection. In: Mulchandani, A, and K. R. Roger (Eds.), Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 249-256. Humanae press. Totowa. NJ
3 Benlsrael, O., H. Benlsrael, and S. Ulitzer (1998), Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl. Environ. Microbiol. 64, 4346-4352
4 Mazzei, F., F. Botre, G. Lorenti, G. Simonetti, F. Porcelli, G. Scibona, and C. Botre (1995), Plant tissue electrode for the determination of atrazine. Anal. Chim. Acta 316, 79-82   DOI   ScienceOn
5 Shoji, R., Y. Sakai, A. Sakoda, and M. Suzuki (2000), Development of a rapid and sensitive bioassay device using human cells immobilized in macroporous microcarriers for the on-site evaluation of environmenttal water. Appl. Microbiol. Biotechnol. 54, 432-438   DOI
6 Loranger, C. and R. Carpentier (1994), A fast assay for phytotoxicity measurements using immobilized photosynthetic membranes. Biotechnol. Bioengng 44, 178-183   DOI   ScienceOn
7 Koenig, A., C. Zaborosch, and F. Spener (1997), Microbial sensors for PAH in aqueous solution using solubilizers. In: Gottlieb, J., H. Hotzl, K. Huck, and R. Niessner (Eds.), pp. 203-206. Field Screening Europe Kluwer Academic Publishers. The Netherland.Fabrication of oxygen electrode arrays and their incorporation into sensors for measuring biochemical oxygen demand. Anal. Chem. Acta 357, 41-49
8 D'Souza, S. F. and A. Deshpande (2001), Simultaneous purification and reversible immobilization of D amino acid oxidase from Trigonopsis variabilis. Appl. Biochem. Biotechnol. (in press)   DOI   ScienceOn
9 Nikolelis, D., U. Krull, J. Wang, and M. Mascini (Eds.)(1998), Biosensors for direct monitoring of environmental pollutants in Field. Kluwer Academic, London
10 Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (1999), Arxula adeninivorans LS3 as suitable biosensor for measurement of biodegradable substances in salt water. J. Chem. Technol. Biotechnol. 73, 385-388   DOI   ScienceOn
11 Yang, Z., H. Suzuki, S. Sasaki, and I. Kurube (1996), Disposable sensor for biochemical oxygen demand. Appl.Microbiol. Biotechnol. 46, 10-14   DOI
12 Hutter, W., J. Peter, H. Swoboda, W. Hampel, E. Rosenberg, D. Kramer, and R. Kellner (1995), Development of microbial assay for chlorinated and brominated hydrocarbons. Anal. Chim. Acta. 306, 237-241   DOI   ScienceOn
13 Peter, J., W. Hutter, W. Stollnberger, and W. Hampel(1996), Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens. Bioelectron. 11, 1215-1219   DOI   ScienceOn
14 Koenig, A., C. Zaborosch, A. Muscat, K. D. Vorlop, and F. Spener (1996), Microbial sensors for naphthalene using Sphingomonas sp. Bl or Pseudomonas fluorescens WW4. Appl. Microbiol. Biotechnol. 45, 844-850   DOI
15 Matsumoto, T., M. Fukaya, S. Akita, Y. Kawamura, and Y. Ito (1996), Determination of sulfite in various foods by the microbial biosensor method. J. Jpn. Soc. Food Sci. Technol. 43, 731-734   DOI   ScienceOn
16 Hollis, R. P., K. Killham, and L. A. Glover (2000), Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol. 66, 1676-1679   DOI
17 Matsumoto, T., M. Fukaya, Y. Kanegae, S. Akita, Y. Kawamura, and Y. Ito (1996), Comparison of the microbial biosensor method with the modified Rankine's method for determination of sulfite in fresh and dried vegetables including sulfur compounds. J. Jpn. Soc. Food Sci. Technol. 43, 716-718   DOI   ScienceOn
18 Rupani, S. P., M. B. Gu, K. B. Konstantinov, P. S. Dhurjati, T. K. Van Dyk, and R. A. LaRossa (1996),Characterization of the stress response of a bioluminescent biological biosensor in batch and continuous cultures. Biotechol. Prog. 12, 387-392   DOI   ScienceOn
19 Erbe, J. L, A. C. Adams, K. B. Raylor, and L. M. Hall(1996), Cyanobacteria carring an smt: lux transcriptional fusion as biosensors for detection of heavy metal cations. J. Ind. Microbiol. 17, 80-83   DOI   ScienceOn
20 Marines, F. (2000), On-line monitoring of growth of Escherichia coli in batch cultures by bioluminescence. Appl. Microbiol. Biotechnol. 53, 536-541   DOI
21 Gibson, T. D. (1999), Biosensors: the stability problem. Analusis 27, 630-638   DOI
22 Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, T. Lonhienne, M. A. Meuwis, and G. Feller (2000), Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107   DOI   ScienceOn
23 Cruz, N., S. L. LeBorgne, G. Ghavez-Hernandez, G. Gosset, F. Valle, and F. Bolivar (2000), Engineering the Escherichia coli outer membrane protein OmpC for metal bioadsorption. Biotechnol. Lett. 22, 623-629   DOI   ScienceOn
24 Webb, O. F., P. R Bienkowski, U. Matrubutham, F. A. Evans, A. Heitzer, and G. S. Sayler (1997), Kinetics and response of a Psuedomonas fluorescence HK44 biosensor. Biotechnol. Bioengng 54, 491-502   DOI   ScienceOn
25 Neudoerfer, F., and R. L. A. Meyer (1997), A microbial biosensor for the microscale measurement of bioavailable organic carbon in oxic sediments. Marine Ecol. Prog. Ser. 147, 295-300   DOI
26 Riedel, K., A. V. Naumov, A. M. Boronin, L. A. Golovleva, H. J. Stein, and F. Scheller (1991), Microbial sensors for determination of aromatics and their chlorodervatives: determination of 3-chlorobenzoate using a pseudomonas-containing biosensor. Appl. Microbial. Biotechnol. 35, 559-562   DOI
27 Suzuki, S., and I. Karube (1987), An amperornetric sensor for carbondioxide based on immobilised bacteria utilising carbondioxide. Anal. chim. Acta 199, 85-91   DOI   ScienceOn
28 Riedel, K (1998), Microbial biosensors based on oxygen electrodes. In: Mulchandani. A., and K. R. Roger. (Eds.), Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 199-223. Humanae Press. Totowa. NJ
29 Janata J. Josowicz M, Vanysek P, and DeVaney DM. (1998) Chemical sensors, Anal Chan. 70: 179R-208R   DOI   ScienceOn
30 D'Souza, S. F (1999), Immobilized enzymes in bioprocess Curr. Sci. 77, 69-79
31 Kamath, N. and S. F. D'Souza (1992), Immobilization of ureolytic cells through flocculation and adhesion on cotton cloth using polyethylenimine. Enzyme Microb. Technol. 13, 935-938   DOI   ScienceOn
32 Mulchandani, A., P. Mulchandani, I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorous hydrolase. 1. Potentiometric microbial electrode. Anal. Chem. 70, 4140-4145.   DOI   ScienceOn
33 Rao, B. Y. K., S. S. Godbole, and S. F. D'Souza (1988), Preparation of lactose free milk by fermentation using immobilized Saccharomyces jragilis. Biotechnol. Lett. 10, 427-430   DOI
34 Noshi, N. T. and S. F. D'Souza (1999), Immobilization of activated sludge for the degradation of phenol. J. Environ. Sci. Health Part A Environ. Sci. Engng 34, 1689-1700   DOI
35 iu, J., L. Bjornsson, and B. Mattiasson (2000), Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens. Bioelectron. 14, 883-893   DOI   ScienceOn
36 Peter, J., W. Buchinger, F. Karner, and W. Hampel (1997), Characteristics of a microbial assay for the detection of halogenated hydrocarbons using cells of an actinomycetes-like organism as a biological component. Acta Biotechnol. 17, 123-130   DOI   ScienceOn
37 Riedel, K., R. Renneberg, and F. Scheller (1990), Adaptable microbial sensor. Anal. Lett. 23, 757-770   DOI   ScienceOn
38 D'Urso, E. M. and G. Fortier (1996), Albumin-poly (ethylene glycol) hydrogel as matrix for enzyme immobilization: biochemical characterization of crosslinked acid phosphatase. Enzyme Microb. Technol. 18, 482-488   DOI   ScienceOn
39 Ursula E, and Keller, S (1998), Chemical Sensors and Biosensors of Medical and BiologicalApplications. Wiley-VCH, Weinheim. New York
40 Rainina, E., E. Efremenco, S. Varfolomeyev, A. L. Simonian, and J. Wild (1996), The Development of a new biosensor based on recombinant E. coli for the detection of organophosphorous neurotoxins. Biosens. Bioelectron. 11, 991-1000   DOI   ScienceOn
41 Meighen, E. A (1994), Genetics of bacterial bioluminescence. Annu. Rev. Genet. 28, 117-139   DOI   ScienceOn
42 Bae, J. H., S. M. Choi, D. J. Lim, and U. R. Kim(1993), The biosensor for L-glutamin using tissue slices of wistar rat. J. Kor. Chem. Soc. 38, 736-741
43 Neudoerfer, F. and R. L. A. Meyer (1997), A microbial biosensor for the microscale measurement of bioavailable organic carbon in oxic sediments. Marine Ecol. Prog. Ser. 147, 295-300
44 Peter, J., W. Hutter, W. Stollnberger, and W. Hampel (1996), Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor. Biosens. Bioelectron. 11, 1215-1219   DOI   ScienceOn
45 Melo, J. S. and S. F. D'Souza (1999), Simultaneous filtration and immobilization of cells from a flowing suspension using a bioreactor containing polyethylenimine coated cotton threads: application in the continuous inversion of sucrose syrups. World J. Microbiol. Biotechnol. 15, 25-27   DOI
46 Lehmann, M., C. Chan, A. Lo, M. Lung, K. Tag, G. Kunze, K. Riedel. B. Grundig, and R. Renneberg (1999), Measuremant of biodegradable substances using the salt tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate(PCS). Part II. Application of the novel biosensor to real samples of coastal and island regions. Biosens. Bioelectron. 14, 295-302   DOI   ScienceOn
47 Di Paolantonio, C. L., and G. A. Rechnitz (1982), Induced bacterial electrode for the potentiometric measurement of tyrosine. Anal. Chim. Acta 141, 1-13   DOI   ScienceOn
48 Arnold, F. H. (1998), Enzyme engineering reaches the boiling point. Proc. Natl. Acad. Sci. 95, 2035-2036   DOI
49 Rogers, K R (1998), Biosensor technology for environmental measurement. In: Meyers RA, editor, Encyclopedia of Environmental Analysis and Remediation, p755-768. John Wiley & Sons, New York
50 Marolia, K. Z. and S. F. D'Souza (1999), Enhancement of the lysozyme activity of the hen egg white foam matrix by cross-linking in the presence of N-acetyl glucosamine. J. Biochem. Biophys. Methods 39, 115-117   DOI   ScienceOn
51 Sousa, S., C. Duffy, H. Weitz, A. L. Glover, E. Bar, R. Henkler, and K. Killham (1998), Use of a lux-modified bacterial biosensor to dentify constraints to bioremediation of btex-contaminated sites. Environ. Toxicol. Chem. 17, 1039-1045   DOI
52 BenIsrael, O., H. BenIsrael, and S. Ulitzer (1998), Identification and quantification of toxic chemicals by use of Escherichia coil carrying lux genes fused to stress promoters. Appl. Environ. Microbiol. 64, 4346-4352
53 Ignatov, O. V., S. M. Rogatcheva, S. V. Kozulin, and N. A. Khorkina (1997), Acrylamide and acrylic acid determination using respiratory activity of microbial cells. Biosens. Bioelectrol1. 12, 105-111   DOI   ScienceOn
54 Gu, M. B., P. S. Dhurjati, T. K. Van Dyk, and A LaRossa (1996), A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol. Prog. 12, 393-397   DOI   ScienceOn
55 Selifonova, O., R. Bulgare, and T. Barkay (1993), Bioluminescent sensor for the detection of Hg(II) in the environment. Appl. Environ. Microbial. 59, 3083-3090
56 Pazirandeh, M., L. A. Chrisey, J. M. Mauro, J. R. Campbell, and B. P. Gaber (1995), Expression of the Neurospora crassa metallothionein gene in Escherichiacoli and its effect on heavy-metal uptake. Appl. Microbiol. Biotechnol. 43, 1112-1117   DOI
57 Sayler, G. S., C. D. Cox, R. BurJage, S. Ripp, D. E. Nivens, C. Werner, Y. Ahn, and U. Matrubutham (1999), Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. In: Fass, R., Y. Flashner, S. Reuveny (Eds), Novel Approaches for Bioremediation of Organic Pollution. Kluwer Academic Plenum Press. New York. pp. 241-254
58 Svitel, J., O. Curilla, and J. Tkac (1998), Microbial cell-based biosensor for sensing glucose. sucrose or lactose. Biotechnol. Appl. Biochem. 27, 153-158
59 Georgopoulos, C., K. Liberek, M. Zyliez, and D. Ang(1994), Properties of the heat shock proteins of Escherichia coil and the autoregulation of the heat shock response. In: Mortimoto, R. I., A. Tissieres, C. Georgopoulos (Eds.), The Biologv of Heat Shock Proteins and Molecular Cheperons. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. NY, pp. 209-250
60 Van Dyk. T. K., W. R. Majarian, K. B. Konstantinov, R. M. Young, P. S. Dhurjati, and R. La Rossa (1994), Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414-1420
61 Nies, D. H. (2000), Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4, 77-82   DOI
62 Heitzer, A., K. Malachowsky, J. Thonnard, P.Bienkowski, D. White, and G. Sayler (1994), Optical biosensor for the environmental on-line monitoring of naphthalene and salicylate bioavaiiabiJity with an immobilised bioluminescent catabolic reporter bacterium. Appl. Environ. Microbiol. 60, 1487-1494
63 Peter, J., W. Hutter, W. Stollnberger, F. Kamer, and W. Hampel (1997), Semicontinuous detection of 1,2dichloroethane in water samples using Xanthobacter autrophicus GJ 10 encapsulated in chitosan beads. Anal. Chem. 69, 2077-2079   DOI   ScienceOn
64 Katrlik, J., R. Brandsteter, J. Svore, M. Rosenberg, and S. Miertus (1997), Mediator type of glucose microbial biosensor based on Aspergillus niger. Anal. Chim. Acta. 356, 217-224   DOI   ScienceOn
65 Kobatake, E., T. Niimi, T. Haruyama, Y. Ikariyama, and M. Aizawa (1995), Biosensing of benzene derivatives in the environment by luminescent Escherichia coli. Biosens. Bioelectron. 10, 601-605   DOI   ScienceOn
66 Rella, R., D. Ferrara, G. Barison, L. Doretti, and S. Lora (1996), High temperature operating biosensor for the determination of phenol and related compounds. Biotechnol. Appl. Biochem. 24, 83-88
67 Endo, H., A. Kamata, M. Hoshi, T. Hayashi, and E. Watanabe (1995), Microbial biosensor system for rapid determination of vitamin B-6. J. Food Sci. 60, 554-557   DOI   ScienceOn
68 D'Souza, S. F. and K. Z. Marolia (1999), Stabilization of Micrococcus lysodeikticus cells towards lysis by lysozyme using glutaraldehyde: application as a novel biospecific ligand for the purification of lysozyme. Biotechnol. Tech. 13, 375-378   DOI
69 Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators B 67, 142-148   DOI   ScienceOn
70 Ukeda, H., G. Wagner, G. Weis, M. Miller, H. Klostermeyer, and R. D. Schmid (1992), Application of a microbial sensor for determination of short-chain fatty acids in raw milk samples. Z. Lebensm Uniters Forseh. 195, 1-2   DOI
71 Di Paolantonio, C. L., and G. A. Rechnitz (1983), Stabilized bacteria-based potentiometric electrode for pyruvate. Anal. Chim. Acta 148, 1-12   DOI   ScienceOn
72 Cai, J. and M. S. DuBow (1997), Use of luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation 8, 105-111   DOI   ScienceOn
73 Ramanathan, S., W. Shi, B. P. Rosen, and S. Daunert (1997), Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal. Chern. 69, 3380-3384   DOI   ScienceOn
74 Unger, A., R. Tombolini, L. Molbak, and J. K. Jansson (1999), Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual grp-luxAB marker system. Appl. Environ. Microbiol. 65, 813-821
75 Patil, A. and S. F. D'Souza (1997), Measurement of in situ halophilic glyceralddehyde-3-phosphate dehydrogenase activity from the permeabilised cells of archaebacterium Haloarcula vallismortis. J. Gen. Appl. Microbiol. 43, 163-167   DOI   ScienceOn
76 Riedel, K. and F. Scheller (1987), Inhibitor-treated microbial sensor for the selective determination of glutamic acid. Analyst 112, 341-342   DOI
77 Simonian, A. L., E. I. Rainina, and J. R. Wild (1998), Microbial biosensors based on potentiometric detection. In: Mulchandani, A. and K. R. Roger (Eds.). Enzyme and Microbial Biosensors: Techniques and Protocols. pp. 237-248. Humanae Press. Totowa. NJ
78 Weppen, P., I. Ebens, B. G. Muller, and D. Schuller(1991), On-line estimation of biological oxygen demand using direct calorimetry on surface attached microbial cultures. Thermochim. Acta. 193, 135-143   DOI   ScienceOn
79 Rouillon, R., M. Tocabens, and R. Carpentier (1999), A photochemical cell for detecting pollutant-induced effects on the activity of immobilized cyanobacterium Synechococcus sp. PCC 7942. Enzyme Microb. Technol. 25, 230-235   DOI   ScienceOn
80 Ukeda, H., G. Wagner, U. Bilitewski, and R. D. Schmid(1992), Flow injection analysis of short-chain fatty acidsin milk based on a microbial electrode. J. Agric. Food Chem. 40, 2324-2327   DOI
81 Fabricant, J. D., Jr. J. H. Chalmer, and M. W. Bhadbury (1995), Bio1uminiscent strain of E. coli for the assay of biocides. Bull. Environ. Contam. Toxicol. 54, 90-95   DOI
82 Ogawa, J., S. Shimizu (1999), Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol. 17, 13-21   DOI   ScienceOn
83 Jeffries, C., N. Pasco, K. Baronian, and L. Gorton paste amperometric biosensor L-glutamate dehydrogenase. Biosens. Bioelectron. 12, 225-232   DOI   ScienceOn
84 Nandakumar, R., and B. Mattiasson (1999), A microbial biosensor using Psuedomonas putida cells immobilized in an expanded bed reactors for the on-line monitoring of phenolic compounds. Anal. Lett. 32, 2379-2393   DOI   ScienceOn
85 Ignatov, O. V., S. M. Rogatcheva, O. V. Vasileva, and V. V. Ignatov (1996), Selective determination of acrylonitrile, acrylamide and acrylic acid in waste water using microbial cells. Resources Conserv. Recycl. 18, 69-78   DOI   ScienceOn
86 Reshetilov, A. N., P. V. Iliasov, H. J. Knackmuss, and A. M. Boronin (2000), The nitrite oxidising activity of Nitribacter strains as a base of microbial biosensor for nitrite detection. Anal. Lett. 33, 29-41   DOI   ScienceOn
87 Koenig, A., J. Secker, K. Riedel, and A. Metzger (1997), A microbial sensor for measuring inhibitors and substrates for nitrification in wastewater. Am. Lab, 12-21
88 Shaw, J., F. Dane, D. Geiger and J. Kloepper (1992), Use of bioluminescence for the detection of genetically engineered microorganisms released in the environment. Appl. Environ. Microbiol. 58, 267-273
89 Reshetilov, A. N., D. A. Efremov, P. V. Iliasov, N. I. Kukushkin, R. Greene, T. Leathers, and A. M. Boronin (1998), Effects of high oxygen concentrations on microbial biosensor signals. Hyperoxygenation by means of perfluorodecaline. Doklady Akademii Nauk 358, 833-835
90 Riedel, K (1994), Microbial sensors and their application in environment. Exp. Techn. Phys. 40(1), 63-76
91 Pavlou, A. K. and A. P. F. Turner (2000), Sniffing out the truth: clinical diagnosis using the electronic nose. Clin. Chem. Lab. Med. 38, 99-112   DOI   ScienceOn
92 Matsunaga, T., S. Suzuki, and R. Tomoda (1984), Photomicrobial sensor for selective determination of phosphate. Enzyme Microb. Technol. 6, 355-357   DOI   ScienceOn
93 Renneberg, R., K. Riedel, and F. Scheller (1985), Microbial sensor for aspartame. Appl. Microbiol. Biotechnol. 21, 180-181   DOI
94 Rouillon, R., M. Sole, R. Carpentier, and J. L. Marty(1995), Immobilization of thylokoids in polyvinyl alcohol for the detection of herbicides. Sens. Actuators. 27, 477-479   DOI   ScienceOn
95 Tag, K., M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators. B 69, 142-148   DOI   ScienceOn
96 Munkittrick, K. R., E. A. Power, and G. A. Sergy(1991), The relative sensitivity of Microtox. Daphnid. Rainbow trout, fat-head Minnow acute lethality tests. Environ. Toxicol. Water Qual. Int. J. 6, 35-62   DOI
97 Preston, S., N. Coad, J. Townend, K. Killham, and G. I. Paton (2000), Biosensing the acute toxicity of metal interaction: are they additive, synergistic, or antagonistic? Environ. Toxicol. Chem. 19, 775-780   DOI
98 Bickerstaff. G. F. (Eds.) (1997), Immobilization of Enzymes and Cells. Humanae Presss. Totowa. NJ
99 D'Souza, S. F (2001), Immobilization of biomaterials for biosensor applications. Appl. Biochem. Biotech. (in press)   DOI   ScienceOn
100 Liu, B., Y. Cui, and J. Deng (1996), Studies on microbial biosensor for DL-phenylalanine and its dynamic response process. Anal. Lett. 29, 1497-1515   DOI   ScienceOn
101 Tauriainen, S., M. Karp, W. Chang, and M. Virta (1998), Luminescent bacterial sensor for cadmium and
102 Schmidt, A., G. C. Standfuss, and U. Bilitewski (1996), Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosens. Bioelectron. 11, 1139-1145   DOI   ScienceOn
103 Rogers, K. R. (1998), Biosensor technology for environmental measurement. In: Meyers, R. A. (Ed.). Encyclopedia of Environmental Analysis and Remediation, 755-768. Wiley. Chichester. UK
104 Scheper, T. H. and F. Lammers (1994), Fermentation monitoring and process control. Curro Opin. Biotechnol. 5, 187-191   DOI   ScienceOn
105 D'Souza, S. F (1983), Osmotic stabilisation of mitochondria using chemical cross-linkers. Biotechnol. Bioengng. 25, 1661-1664   DOI   ScienceOn
106 Paton, G. I., E. A. S. Rattray, C. D. Campbell, M. S. Cresser, L. A. Glover, J. C. L. Meeussen, and K. Killham (1997), Use of genetically modified microbial biosensors for soil ecotoxicity testing. In: Pankhurst, c., B. Doube, and V. Gupta (Eds.), Biological Indicators of Soil Health and Sustainable Productivity. CAB intematonal. pp. 397-418. Wellesboume. UK
107 Srinivasan, M. C. (1994), Microbial biodiversity and its relevance to screening for novel industrially useful enzymes. Curro Sci. 66, 137-140
108 McGrath, S. P., B. Knight, K. Killham, S. Preston, and G. I. Paton (1999), Assesment of the toxicity of metals in soils amended with servage sludge using a chemical speciation technique and a lux-based biosensor. Environ. Toxicol. Chem. 18, 659-663   DOI
109 Arikawa, Y., K. Ikebukuro, and 1. Karube (1998), Microbial biosensors based on respiratory inhibition. In: Mulchandani. A, and K. R. Roger. (Eds.), Enzyme and Microbial Bioseneors: Techniques and Protocols. pp.225-235. Humanae Press. Totowa. NJ
110 Burlage, R., and C. T. Kuo (1994), Living biosensors for the management and manipulation of microbial consortia. Annu. Rev. Microbiol. 48, 291-309   DOI   ScienceOn
111 Mulchandani, A., P. Mulchandani, W. Chen, J. Wang, and L. Chen (1999), Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorous hydrolase. Anal. Chem. 71, 2246-2249   DOI   ScienceOn
112 Karube, I., T. Matsunaga, S. Mitsuda, and S. Suzuki(1977), Microbial electrode BOD sensors. Biotechnol. Bioengng. 19, 1535-1545   DOI   ScienceOn
113 Kumar, S. D., A. V. Kulkarni, R. G. Dhaneshwar, and S. F. D'Souza (1992), Cyclic voltametric studies at the glucose oxidase enzyme electrode. Bioelectrochem. Bioenerg. 27, 153-160   DOI   ScienceOn
114 Smidsord, o. and G. Skjac-Break (1990), Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71-78   DOI   ScienceOn
115 Gupte, A. and S. F. D'Souza (1999), Stabilization of alginate beads using radiation polymerized polyacrylamide. J. Biochem. Biophys. Methods 40, 39-44   DOI   ScienceOn
116 Schmidt, A., G. C. Standfuss, and U. Bilitewski (1996), Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosens.Bioelectron. 11, 1139-1145   DOI   ScienceOn
117 Ramakrishna, S. V. and R. S. Prakasham (1999), Microbial fermentation with immobilized cells. Curro Sci. 77, 87-100
118 Brim, H., S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly (2000), Engineering Deinococcus radiodurans for metalremediation in radioactive mixed waste environments. Nat. Biotechnol. 18, 85-90   DOI   ScienceOn
119 Tag, K., M. Lghmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze (2000), Measurement of biodegradable substances with a mycelia-sensor based on the salt tolerant yeast Arxula adeninivorans LS3. Sens. Actuators B 67, 142-148   DOI   ScienceOn
120 Karube, I., Y. Wang, E. Tamiya, and M. Kawarai (1987), Microbial electrode sensor for vitamin-Bl2. Anal. Chim. Acta 199, 93-97   DOI   ScienceOn
121 D'Souza, S. E., W. Altekar, and S. F. D'Souza (1997), Adaptive response of Haloferax mediterranei to low concentration of NaCl(<20%) in the growth medium. Arch. Microbiol. 168, 68-71   DOI
122 Magan, N. and P. Evans (2000), Volatiles as an indicator of fungal activity and differentiation between species and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored Prod. Res. 36, 319-340   DOI   ScienceOn
123 Macaskie, L. E., R. M. Empson, A. K. Cheetham, C. P. Grey, and A. J. Skarnulis (1992), Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline $HUO_2PO_4<$/TEX>. Science 257, 782-785   DOI
124 Fleschin, S., C. Bala., A. A. Bunaciu., A. Panait., and H. Y. Aboul-Enein (1998), Enalapril microbial biosensor. Prep. Biochem. biotechnol. 28, 261-269.   DOI   ScienceOn
125 Ripp, S., D. E. Nivens, C. Werner, and G. S. Sayler(2000), Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl. Microbiol. Biotechnol. 53, 736-741   DOI   ScienceOn
126 Miranda, C. and S. F. D'Souza (1988), Clarification of pectin using pectinolytic fungi immobilized in open pore gelatin block. J. Microbiol. Biotechnol. 3, 60-65
127 Nandakumar, R., and B. Mattiasson (1999), A low temperature microbial biosensor using immobilized psychrophilic bacteria. Biotechnol. Tech. 13, 689-693   DOI
128 Ulbricht, M. and A Papra (1997), Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, crosslinking, and covalent binding. Enzyme Microb. Technol. 20, 61-68   DOI   ScienceOn
129 Ikebukuro, K., M. Honda, K. Nakanishi, Y. Nomura, Y. Masuda, K. Yokoyama, Y. Yamauchi, and I. Karube (1996), Flow-type cyanide sensor using an immobilized microorganism. Electroanalysis. 8, 876-879   DOI   ScienceOn
130 Brown, J. S., E. A. S. Rattray, G. I. Paton, G. Reid, I. Caffoor, and K. Killham (1996), Comparative assessment of the toxicity of a papermill effluent by respirometry and luminescence-based bacterial assay. Chemosphere. 32, 1553-1561   DOI   ScienceOn
131 Sundenmeyer-Klinger, H., W. Meyer, B. Warninghoff, and E. Bock (1984), Membrane bound nitrite oxidoreductase of nitrobacter: evidence for a nitrate reductase system. Arch. Microbiol. 140, 153-158   DOI
132 Karube, I., T. Matsunaga, S. Mitsuda, and S. Suzuki (1977), Microbial electrode BOD sensor. Biotechn. Bioeng. 19, 1535-1547   DOI   ScienceOn
133 Kim, U. R., K. S. Roh, Y. D. Ha, Y. S. Seuk, and Y.S. Park (l994), The studies for the malate tissue biosensor using malate dehydrogenase (decarboxylating) in the bundle sheath cell of the com leaf. Kor. J. Biotechnol. Bioeng. 9, 319-324
134 Kim, U. R., K. J. Nam, and S. M. Choi (1992), The development of arginine-selective membrane electrode using tissue slices of the rose of sharon. J. Kor. Chem. Soc. 36, 117-139
135 Joshi, M. S., L. R. Gowda, L. C. Katwa, and S. G. Bhat (1989), Permeabilization of yeast cells (Kluyveromyves jragilis) to lactose by digitonin. Enzyme Microb. Technol.11, 439-449   DOI   ScienceOn
136 D'Souza, S. F. and J. S. Melo (1991), A method for the preparation of co-immobilizates by adhesion using polyethylenimine. Enzyme Microb. Technol. 13, 508-511   DOI   ScienceOn
137 Mattiasson, B. (1982), Biospecific reversible immobilization. A method for introducing labile structures into analytical systems. Appl. Biochem. Biotechnol. 7, 121-125   DOI   ScienceOn
138 Bilitewski, U. and A. P. F. Turner (Eds.) (2000), Biosensors for Environmental Monitoring. Harwood Academic, Amsterdam
139 Ukeda, H., Y. Fujita, M. Sawamura, and H. Kusunose(1994), Determination of short-chain fatty acids in raw milk using a microbial sensor and the relationshin with milk quality. Anal. Sci. 10, 683-685   DOI   ScienceOn
140 Peitzsch, N., G. Eberz, and D. H. Nies (1998), Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453-458
141 Bundy, J. G., J. L. Wardell, C. D. Campbell, K. Killham, and G. I. Paton (1997), Application of bioluminescence-based microbial biosensors to the ecotoxicity assessment of organotins. Lett. Appl. Microbiol. 25, 353-358   DOI   ScienceOn
142 Palchetti, I., A. Cagnini, M. Del Carlc, C. Coppi, M. Mascini, A. P. F. Turner (1997), Determination of acetylcholinesterase pesticides in real samples using a disposable biosensor. Anal. Chim. Acta. 337, 315-321   DOI   ScienceOn
143 Riedel, K., R. Renneberg, M. KUhn, and F. Scheller (1988), A fast estimation of BOD with microbial sensors. Appl. Microbial. biotechnol. 28, 316-318   DOI
144 D'Souza, S. F (1989), Immobilized cells: techniques and applications. Indian. J. Microbiol. 29, 83-117
145 Chan, C., M. Lehmann, K. Tag, M. Lung, G. Kunze, K. Riedel, R. Grundig, and R. Renneberg (1999), Measurement of biodegradable substances using the salt tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate(PCS). Part I. Construction and characterization of the microbial sensor. Biosens. Bioelectron. 14, 131-138   DOI   ScienceOn
146 Chee, G. I., Y. Nomura, and I. Karube (1999), Biosensor for the estimation of low biochemical oxygen demand. Anal. Chim. Acta. 379, 185-191   DOI   ScienceOn
147 Preininger, C., I. Klimant, and O. S. Wolfbeis (1994), Optical fiber sensor for biological oxygen demand. Anal. Chem. 66, 1841-1846
148 Rogers, K. R. and C. L. Gerlach (1999), Update on envi-506A
149 Mulchandani, A. and K. R. Rogers (Eds.) (1998), Enzyme and Microbial Biosensors: Techniques and Protocols. Humanae Press. Totowa. NJ
150 Mulchandani, A., I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surfaceexpressed organophosphorous hydrolase. 2. Fiber-optic microbial biosensor. Anal. Chem. 70, 5042-5046   DOI   ScienceOn
151 Marty, J. L., D. Olive, and Y. Asano (1997), Measurement of BOD-correlation between 5-day BOD and commercial BOD biosensor values. Environ. Technol. 18, 333-337   DOI