• 제목/요약/키워드: DNA Sensor

검색결과 80건 처리시간 0.028초

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik;Eun, Duk-Soo;Kong, Seong-Ho;Shin, Jang-Kyoo;Lee, Jong-Hyun
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.337-342
    • /
    • 2005
  • A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Analysis of Sensing Mechanisms in a Gold-Decorated SWNT Network DNA Biosensor

  • Ahn, Jinhong;Kim, Seok Hyang;Lim, Jaeheung;Ko, Jung Woo;Park, Chan Hyeong;Park, Young June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.153-162
    • /
    • 2014
  • We show that carbon nanotube sensors with gold particles on the single-walled carbon nanotube (SWNT) network operate as Schottky barrier transistors, in which transistor action occurs primarily by varying the resistance of Au-SWNT junction rather than the channel conductance modulation. Transistor characteristics are calculated for the statistically simplified geometries, and the sensing mechanisms are analyzed by comparing the simulation results of the MOSFET model and Schottky junction model with the experimental data. We demonstrated that the semiconductor MOSFET effect cannot explain the experimental phenomena such as the very low limit of detection (LOD) and the logarithmic dependence of sensitivity to the DNA concentration. By building an asymmetric concentric-electrode model which consists of serially-connected segments of CNTFETs and Schottky diodes, we found that for a proper explanation of the experimental data, the work function shifts should be ~ 0.1 eV for 100 pM DNA concentration and ~ 0.4 eV for $100{\mu}M$.

Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load

  • Kim, Jin Hee;Rhee, Inkyu;Jung, Yong Chae;Ha, Sumin;Kim, Yoong Ahm
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.90-96
    • /
    • 2017
  • We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G' bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.

Crystal Structure of the Pneumococcal Vancomycin-Resistance Response Regulator DNA-Binding Domain

  • Park, Sang-Sang;Lee, Sangho;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.179-185
    • /
    • 2021
  • Vancomycin response regulator (VncR) is a pneumococcal response regulator of the VncRS two-component signal transduction system (TCS) of Streptococcus pneumoniae. VncRS regulates bacterial autolysis and vancomycin resistance. VncR contains two different functional domains, the N-terminal receiver domain and C-terminal effector domain. Here, we investigated VncR C-terminal DNA binding domain (VncRc) structure using a crystallization approach. Crystallization was performed using the micro-batch method. The crystals diffracted to a 1.964 Å resolution and belonged to space group P212121. The crystal unit-cell parameters were a = 25.71 Å, b = 52.97 Å, and c = 60.61 Å. The structure of VncRc had a helix-turn-helix motif highly similar to the response regulator PhoB of Escherichia coli. In isothermal titration calorimetry and size exclusion chromatography results, VncR formed a complex with VncS, a sensor histidine kinase of pneumococcal TCS. Determination of VncR structure will provide insight into the mechanism by how VncR binds to target genes.

질병 유발 독성 물질(산화아연 나노선) 검출 기술 개발 (Disease inducing material ; Zinc Oxide nanowire detection)

  • 유준석;박진성;장규환;이상명;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.81-82
    • /
    • 2014
  • Recently it is often reported about toxic nanomaterials to organisms. In other words, it is called nanotoxicity, toxic nanomaterials have extremely toxic properties. Zinc oxide is widely used as a promising nanomaterials, but some researchers are warning that nanotype zinc oxide has nanotoxicity. One of typical zinc oxide materials is a zinc oxide nanowire, especially, there is no technique which is detecting a zinc oxide nanowire because of its geometric. In here, we use reduced graphene oxide in order to detect zinc oxide nanowire and use DNA immobilized cantilever sensor, we detect graphene wrapped zinc oxide nanowire. Detection of a zinc oxide nanowire is measured by shifting of cantilever's resonance frequency based on vibration theory. It is proved that cantilever sensor is valid for nanomaterial detection. We showed that detection of a zinc oxide nanowire is successful.

  • PDF

Voltammetric Assay of Antibiotics for Modified Carbon Nanotube Sensor

  • Ly, Suw-Young;Yoo, Hai-Soo;Lee, Chang-Hyun
    • 한국응용과학기술학회지
    • /
    • 제29권3호
    • /
    • pp.443-449
    • /
    • 2012
  • A investigation of electrochemical analysis of antibiotics Neomycin ($C_{23}H_{46}N_6O_{13}$) was searched using electrochemical square wave (SW) stripping and cyclic voltammetry (CV) using working sensor of the modified carbon nanotube combination electrodes, optimum diagnostic parameters were searched by anodic stripping, final conditions were attained to working range of 1.0-14.0 ng/L, detection limit (S/N) was found to be 0.6 ng/L. The developed method was discovered to be fitting in quality control in the food, pharmaceutical and other manufacturing sectors.

바이오센서 (Biosensors)

  • 김의락
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.423-427
    • /
    • 2000
  • 바이오센서의 구조와 기능 그리고 종류에 대해 소개하였다. 이 분야의 연구가 과거 15년간 각국에서 경쟁적으로 연 구하였으나 glucose sensor가 상품화되 었을 뿐 연구결과를 상 품화한 것은 극히 적은 수였다. 그러나 최근 몇 년간 특히 포켓용 i-STAT point-of-care system의 도입 그리고 surface plasmon resonance와 evanescent wave 측정 장치 의 출현으로 상품화된 바이오샌서의 수가 크게 증가하는 추세에 었다. 이들 중 의료임상과 생물공정 그리고 환경오염 측정용으로 응 용되고 있는 몇 가지 상품에 대하여 약술하였다.

  • PDF

eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가 (Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir)

  • 곽태수;김원석;이선호;곽인실
    • 생태와환경
    • /
    • 제54권4호
    • /
    • pp.272-279
    • /
    • 2021
  • 필터의 손상 없이 포집할 수 있는 필터케이스를 적용하고, 전압 제어와 압력 제어를 각각 할 수 있는 펌프 방식의 eDNA 포집 및 채수 시스템을 개발하여 집수매거 취수원을 대상으로 종래의 진공압 방식의 포집 및 추출 실험과 eDNA 농도를 비교함으로써 개발 시스템의 필터링 성능을 평가하였다. 개발된 시스템은 전압제어(Manual pump system) 방식과 압력제어(Automatic pump system) 방식으로 구분하여 필터링 시 필터기 내부 압력을 측정하고 각 시스템의 압력 변화를 비교하였다. 전압제어 방식은 필터링 초기에 65 [KPa]로 시작하여 필터링 시간이 경과함에 따라 필터에 축적되는 여과물의 양이 증가하므로 압력이 점진적으로 증가하였다. 압력제어 방식은 설계된 알고리즘에 따라 일정 압력을 유지하도록 제어한 결과, 압력 센서의 피드백 시간에 따라 필터링 과정에서 압력 변동의 폭은 차이가 있으나 목표 압력에 수렴하는 것을 확인하였다. 개발된 시스템의 필터링 성능을 확인하기 위해 eDNA 농도를 측정하고 전압제어 방식과 압력제어 방식을 대조군과 비교하였다. 전압제어 방식은 대조군과 유사한 결과를 얻을 수 있었으나 압력제어 방식은 대조군에 비해 낮게 나타났다. 압력제어 방식의 경우 필터링 시 압력 편차가 크고, 필터링 과정에서 일정한 압력을 유지하기 때문에 나타난 결과로 사료된다. 따라서 필터링 시에는 일정한 압력을 유지하는 것보다 필터링 시간 경과와 함께 여과물의 증가에 따라 압력이 점진적으로 증가하는 전압제어 방식이 eDNA를 포집하는데 적합함을 확인하였다. 정수역과 유수역의 eDNA 평균농도를 대조군으로 비교한 결과, 각각 96.2 [ng µL-1], 88.4 [ng µL-1]로 나타났으며, 펌프 방식으로 eDNA 평균농도를 비교한 결과는 각각 90.7 [ng µL-1], 74.8 [ng µL-1]로 정수역에서 필터링한 시료에서 높게 나타났다. 정수역에서 eDNA 농도가 높게 나타난 것은 잔존하는 eDNA를 비롯한 미세 유기물의 영향으로 사료된다.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제10권3호
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

Hemoglobin-DNA/pyterpy 박막을 이용한 과산화수소의 전기화학적 검출 (Electrochemical Detection of Hydrogen Peroxide based on Hemoglobin-DNA/pyterpy Modified Gold Electrode)

  • 이동윤;최원석;박상현;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1295-1296
    • /
    • 2008
  • Hydrogen peroxide ($H_2O_2$) biosensor is one of the most developing sensors because this kind of sensors is highly selective and responds quickly to the specific substrate. Hemoglobin (Hb) has been used as ideal biomolecules to construct hydrogen peroxide biosensors because of their high selectivity to $H_2O_2$. The direct electron transfer of Hb has widely investigated for application in the determination of $H_2O_2$ because of its simplicity, high selectivity and intrinsic sensitivity. An electrochemical detection for hydrogen peroxide was investigated based on immobilization of hemoglobin on DNA/Fe(pyterpy)$^{2+}$ modified gold electrode. The pyterpy monolayers were firstly an electron deposition onto the gold electrode surface of the quartz crystal microbalance (QCM). It is offered a template to attach negatively charged DNA. The fabrication process of the electrode was verified by quartz crystal analyzer (QCA). The experimental parameters such as pH, applied potential and amperometric response were evaluated and optimized. Under the optimized conditions, this sensor shows the linear response within the range between $3.0{\times}10^{-6}$ to $9.0{|times}10^{-4}$ M concentrations of $H_2O_2$. The detection limit was determined to be $9{\times}10^{-7}$ M (based on the S/N=3).

  • PDF