Browse > Article
http://dx.doi.org/10.5573/JSTS.2014.14.2.153

Analysis of Sensing Mechanisms in a Gold-Decorated SWNT Network DNA Biosensor  

Ahn, Jinhong (NANO Systems Institute (NSI), Seoul National University)
Kim, Seok Hyang (Department of Electrical and Computer Engineering, Seoul National University)
Lim, Jaeheung (Department of Electrical and Computer Engineering, Seoul National University)
Ko, Jung Woo (Technology Commercialization Division-SMEs Cooperation Center, ETRI)
Park, Chan Hyeong (Department of Electronics and Communications Engineering, Kwangwoon University)
Park, Young June (NANO Systems Institute (NSI), Seoul National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.14, no.2, 2014 , pp. 153-162 More about this Journal
Abstract
We show that carbon nanotube sensors with gold particles on the single-walled carbon nanotube (SWNT) network operate as Schottky barrier transistors, in which transistor action occurs primarily by varying the resistance of Au-SWNT junction rather than the channel conductance modulation. Transistor characteristics are calculated for the statistically simplified geometries, and the sensing mechanisms are analyzed by comparing the simulation results of the MOSFET model and Schottky junction model with the experimental data. We demonstrated that the semiconductor MOSFET effect cannot explain the experimental phenomena such as the very low limit of detection (LOD) and the logarithmic dependence of sensitivity to the DNA concentration. By building an asymmetric concentric-electrode model which consists of serially-connected segments of CNTFETs and Schottky diodes, we found that for a proper explanation of the experimental data, the work function shifts should be ~ 0.1 eV for 100 pM DNA concentration and ~ 0.4 eV for $100{\mu}M$.
Keywords
Carbon nanotube; DNA sensor; Schottky barrier; work function; CNT network;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Wang, Electroanalysis, "Carbon-nanotube based electrochemical biosensors: A review," vol. 17, no. 1, pp. 7-14, 2005.   DOI   ScienceOn
2 K. Besteman, J. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as single-molecule biosensors," Nano Lett., vol. 3, no. 6, pp. 727-730, 2003.   DOI   ScienceOn
3 A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, "Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors," Proc. Natl. Acad. Sci. U.S.A., vol. 103, no. 4, pp. 921-926, 2006.   DOI   ScienceOn
4 D. Landheer, G. Aers, W. R. McKinnon, M. J. Deen, and J. C. Ranuarez, "Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors," J. Appl. Phys., vo. 98, pp. 044701-1-15, 2005.   DOI   ScienceOn
5 J. W. Ko, J.-M. Woo, J. Ahn, J. H. Cheon, J. H. Lim, S. H. Kim, H. Chun, E. Kim and Y. J. Park, "Multi-order dynamic range DNA sensor using a gold decorated SWCNT random network," ACS Nano, vol. 5, no. 6, pp. 4365-4372, 2011.   DOI
6 N. Pimparkar, J. Guo, and M. A. Alam, "Performance assessment of sub-percolating nanobundle network transistors by an analytical model," IEDM Tech. Dig., 2005, pp. 534-537.
7 N. Pimparkar, Q. Cao, S. Kumar, J. Y. Murthy, J. Rogers, and M. A. Alam, "Current-voltage characteristics of long-channel nanobundle thin-film transistors: A "bottom-up" perspective," IEEE Electron Device Lett., vol. 28, no. 2, pp. 157-160, 2007.   DOI   ScienceOn
8 D. Landheer, W. R. McKinnon, G. Aers, W. Jiang, M. J. Deen, and M. W. Shiwari, "Calculation of the response of field-effect transistors to charged biological molecules," IEEE Sensors Journal, vol. 7, no. 9, pp. 1233-1242, 2007.   DOI
9 M. W. Shinwari, M. J. Deen, and D. Landheer, "Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design," Microelectronics Reliability, vol. 47, pp. 2025-2057, 2007.   DOI
10 X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-l. Chang, and Q. Wang, "Carbon nanotube DNA sensor and sensing mechanism," Nano Lett., vol. 6, no. 8, pp. 1632-1636, 2006.   DOI   ScienceOn
11 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, vol. 287, pp. 1801-1804, 2000.   DOI   ScienceOn
12 I. Heller, A. M. Janssens, J. Mannik, E. D. Minot, S. G. Lemay, and C. Dekker, "Identifying the mechanism of biosensing with carbon nanotube transistors," Nano Lett., vol. 8, no. 2, pp. 591-595, 2008.   DOI
13 S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, "Carbon nanotubes as Schottky barrier transistors," Phys. Rev. Lett., vol. 89, pp. 106801-1-4, 2002.   DOI   ScienceOn
14 E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Clarendon Press, 2nd edition, 1988.
15 Mingquan Zhang, "Label-free Detection of Oligonucleotide Microarrays by the Scanning Kelvin Nanoprobe," Ph.D. dissertation, Dept. of Chemistry, Univ. of Toronto, 2008.
16 M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Young-Gui Yoon, M. S. C. Mazzoni, Hyoung Joon Choi, Jisoon Ihm, Steven G. Louie, A. Zettl, and Paul L. McEuen, "Crossed Nanotube Junctions," Science, vol. 288, pp. 494-497, 2000.   DOI
17 D. C. Hansen, K. M. Hansen, T. L. Ferrell, and T. Thundat, "Discerning Biomolecular Interactions Using Kelvin Probe Technology," Langmuir, vol. 19, pp. 7514-7520, 2003.   DOI
18 S.-H. Jhi, S. G. Louie, and M. L. Cohen, "Electronic properties of oxidized carbon nanotubes," Phys. Rev. Lett., vol. 85, no. 8, pp. 1710-1713, 2000.   DOI   ScienceOn
19 M. Thompson, L.-E. Cheran, M. Zhang, M. Chacko, H. Huo, and S. Sadeghi, "Label-free Detection of Nucleic Acid and Protein Microarrays by Scanning Kelvin Nanoprobe," Biosens. Bioelectron., vol. 20, pp. 1470-1481, 2005.
20 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622-625, 2000.   DOI   ScienceOn