• Title/Summary/Keyword: DNA Concentration

Search Result 1,171, Processing Time 0.026 seconds

A Tetraploid Induction in Hypericum patulum Thunberg by Colchicine Soaking Treatment (콜히친 침지처리에 의한 '망종화'의 4배체 식물유도)

  • Kwon, Soo Jeong;Cho, Kab Yeon;Kim, Hag Hyun
    • Korean Journal of Plant Resources
    • /
    • v.26 no.2
    • /
    • pp.284-288
    • /
    • 2013
  • This study aimed to get the basic data on the breeding of good varieties in Hypericum patulum Thunberg. The optimum materials, concentration and soaking time were examined to identify the effective approach to induce tetraploid plant by colchicine treatment to cultivate the varieties. For the seed germination rate of seed by colchicine treatment, the higher colchicine concentration was and the longer soaking time was, the more the germination rate decreased. While individuals were germinated in 16 test groups except control group (no treatment group), all the plants were diploid and no tetraploid was induced. For the plant regeneration rate by colchicine treatment on the explant of Hypericum patulum Thunberg that was under in vitro culture, the higher the colchicine concentration increased, the ress the regeneration rate. While total 147 individuals were regenerated in all treatment, when the explant was soaking treatment in more than 0.05% for over 6 hours, tetraploid could be obtained. In the soaking treatment of 0.05% for over 6 hours, tetraploid could be obtained. In particular, for the soaking treatment in 0.05% for 12 hours, 8 tetraploids were induced, which was about 47.1% of the number of plant regenerated. In accordance with the observation on doubling of DNA contents in leaf in order to identify polyploidy, the peak DNA content of G1 phase was 94.5 for diploid and 192.5 for tetraploid. It confirmed doubling of DNA content. Furthermore, the number of chloroplasts per guard cell depending on polyploid was around 10 in diploid and 17 to 19 in tetraploid, which were around 1.7 to 1.9 times as much as diploid.

Preparation of Cationic Liposomes Modified by Polyethylenimine and Their Application as Gene Carrier (폴리에틸렌이민으로 수식된 양이온 리포좀의 제조 및 유전자 전달체로서의 응용)

  • Seo, Dong-Hoan;Shin, Byung-Cheol;Kim, Moon-Suk
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.277-281
    • /
    • 2005
  • Recently, various curriers prepared by the modification both cationic polymers and liposomes have been examined. In this work, we prepared the lipid with polyethylenimine (PEI) to investigate the possibility as effective DNA carrier. Cationic lipid (PEI-DSPE) was synthesized by the reaction of PEI and 1,2-diacyl-sn-glycero-3-phosphoetha-nolamine (DSPE). The liposomes were prepared by the concenoation changes of PEI-DSPE for a mixture of 1,2-disteanyl-sn-glycero-3-phosphocholine (DSPC), L-$\alpha$-phosphatidylcholine, hydrogenated (HSPC) and cholesterol (CHOL). Particle size decreased as PEI-DSPE concentration increased. In addition, the charge of liposome surface increased to positive value according to increasing the relative of PEI-DSPE concentration. The complexation of DNA was confirmed by gel retardation assay and fluorescence measurement. The surface charge of liposome/DNA complexes increased as the liposome concentration or surface charge of liposome increased. In conclusion, we confirmed that the prepared liposomes have the possibility as a DNA carrier.

Effects of dietary polyphenol (-)-epigallocatechin-3-gallate on the differentiation of mouse C2C12 myoblasts (식이성 폴리페놀 (-)-epigallocatechin-3-gallate가 mouse C2C12 myoblast 분화에 미치는 영향)

  • Kim, Hye-Jin;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.420-426
    • /
    • 2007
  • In the present investigation, we studied the modulating effects of (-)-epigallocatechin-3-gallate(EGCG) on the differentiation of mouse C2C12 myoblasts. We found that the strong inhibitory effect of EGCG on DNA methyltransferase-mediated DNA methylation induced transdifferentiation of C2C12 myoblasts into smooth muscle cells demonstrated by both morphological changes and immunofluorescent staining. C2C12 myoblasts treated with EGCG for 4 days expressed smooth muscle ${\alpha}-actin$ protein. Real-time PCR data revealed that smooth muscle ${\alpha}-actin$ mRNA was induced by EGCG treated C2C12 myoblasts in a concentration-dependent manner. Smooth muscle ${\alpha}-actin$ mRNA concentration increased 330% and 490% after 2 and 3 days of 50 ${\mu}M$ of EGCG treatment. The expression of another smooth muscle marker, transgelin, mRNA was also increased up to 9-fold by 4 days of EGCG treatment compared with control in a concentration-dependent manner. These results suggested that C2C12 enables to transdifferentiate into smooth muscle when gene expression patterns are changed by the inhibition of DNA methylation induced by EGCG. In conclusion, transdifferentiation of C2C12 myoblasts into smooth muscle is resulted from the modulating effects of EGCG on DNA methylation which subsequently results in changing the expression pattern of several genes playing a critical role in the differentiation of C2C12 myoblasts.

Optimization of DNA sequencing with plasmid DNA templates using the DNA sequencer (Plasmid DNA template를 이용한 DNA 염기서열 분석기기의 최적 조건 확립)

  • Lee, Jae-Bong;Kim, Jae-Hwan;Seo, Bo-Young;Lee, Kyeong-Tae;Park, Eung-Woo;Yoo, Chae-Kyoung;Lim, Hyun-Tae;Jeon, Jin-Tae
    • Journal of agriculture & life science
    • /
    • v.43 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The DNA sequencer is known to be more sensitive for the quality of template DNA, method of purification followed by sequencing reaction, and gel concentration. Therefore, we investigated optimal conditions for template preparation, purification, sequencing reaction, gel concentration, and injection medium. For plasmid prepara- tion, using chloroform instead of phenol improved the average read length from 532 bp to 684 bp. The addition of 2.5% DMSO sequencing PCR reaction resulted in 200 bp longer sequences. Purification using 50 mM EDTA and 0.6 M Sodium acetate(pH 8.0) presented 20 bp longer sequences than that using 50 mM EDTA(pH 8.0) and 0.6 M sodium acetate(pH 5.2). The injection for sequencing analysis using ABI formamide presented 90 bp longer sequences than that of using formamide deionized by resin. Moreover, there were 150 bp more readable sequences in 3.6% PAGE gel than in 4%. Consequently, it was concluded that an average of 700 bp per reaction with 85% accuracy can be obtained by the following optimal conditions: template preparation using chloroform, 2.5% DMSO, 50 mM EDTA and 0.6 M sodium acetate(pH 8.0), ABI formamide and 3.6% gel concentration.

Production of Soluble Human Granulocyte Colony Stimulating Factor in E. coli by Molecular Chaperones

  • PARK SO-LIM;SHIN EUN-JUNG;HONG SEUNG-PYO;JEON SUNG-JONG;NAM SOO-WAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1267-1272
    • /
    • 2005
  • The effects of coexpression of GroEL/ES and DnaK/DnaJ/GrpE chaperones on the productivity of the soluble form of human granulocyte colony stimulating factor (hG-CSF) in E. coli were examined. Recombinant hG-CSF protein was coexpressed with DnaK/DnaJ/GrpE or GroEL/ES chaperones under the control of the araB or Pzt-1 promoter, respectively. The optimal concentration of L-arabinose for the expression of DnaK/DnaJ/GrpE was found to be 1 mg/ml. When L-arabinose was added at $OD_{600}$=0.2 (early-exponential phase), soluble hG-CSF production was greatly increased. In addition, it was observed that the DnaK/DnaJ/GrpE and GroEL/ES chaperones had no synergistic effects on preventing aggregation of hG-CSF protein. Consequently, by coexpression of the DnaK/DnaJ/GrpE chaperone, the signal intensity of the hG-CSF protein band in the soluble fraction of cell lysate was increased from $3.5\%\;to\;13.9\%$, and Western blot analysis also revealed about a 4-5-fold increase of production of soluble hG-CSF over the non-induction case of DnaK/DnaJ/GrpE.

Surface Polarity Dependent Solid-state Molecular Biological Manipulation with Immobilized DNA on a Gold Surface

  • Lee, Jiyoung;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.181-188
    • /
    • 2012
  • As the demand for large-scale analysis of gene expression using DNA arrays increases, the importance of the surface characterization of DNA arrays has emerged. We compared the efficiency of molecular biological applications on solid-phases with different surface polarities to identify the most optimal conditions. We employed thiol-gold reactions for DNA immobilization on solid surfaces. The surface polarity was controlled by creating a self-assembled monolayer (SAM) of mercaptohexanol or hepthanethiol, which create hydrophilic or hydrophobic surface properties, respectively. A hydrophilic environment was found to be much more favorable to solid-phase molecular biological manipulations. A SAM of mercaptoethanol had the highest affinity to DNA molecules in our experimetns and it showed greater efficiency in terms of DNA hybridization and polymerization. The optimal DNA concentration for immobilization was found to be 0.5 ${\mu}M$. The optimal reaction time for both thiolated DNA and matrix molecules was 10 min and for the polymerase reaction time was 150 min. Under these optimized conditions, molecular biology techniques including DNA hybridization, ligation, polymerization, PCR and multiplex PCR were shown to be feasible in solid-state conditions. We demonstrated from our present analysis the importance of surface polarity in solid-phase molecular biological applications. A hydrophilic SAM generated a far more favorable environment than hydrophobic SAM for solid-state molecular techniques. Our findings suggest that the conditions and methods identified here could be used for DNA-DNA hybridization applications such as DNA chips and for the further development of solid-phase genetic engineering applications that involve DNA-enzyme interactions.

Quadruplex Genotype Analysis at HumTH01, HumTPOX, HumCSF1PO and Amelogenin Loci by FoLT-PCR (FoLT-PCR에 의한 유전자형 (HumTH01, HumTPOX, HumCSF1PO & Amelogenin) 분석)

  • Lee, Yang-Han;Lim, Si-Keun;Kang, Pil-Won;Choi, Dong-Ho;Yoon, Song-Ro;Han, Myun-Soo
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.260-264
    • /
    • 1999
  • A simple and rapid procedure, called FoLT-PCR(Formamide Low Temperature-Polymerase Chain Reaction) was applied to amplifying DNA directly from various forensic biological evidences including human blood, saliva, hair root, or semen without any DNA preparative steps. We added washing step with non-ionic detergent, 1% Triton X-100, and used Taq DNA polymerase instead of Tth DNA polymerase to amplify 3 STR loci and gender allele simultaneouly. Optimal concentration of formamide and annealing temperature were determined empirically to 8%(v/v), and $48^{\circ}C$ respectively. We also compared this method with standard PCR.

  • PDF

Analysis of HBeAg and HBV DNA Detection in Hepatitis B Patients Treated with Antiviral Therapy (항 바이러스 치료중인 B형 간염환자에서 HBeAg 및 HBV DNA 검출에 관한 분석)

  • Cheon, Jun Hong;Chae, Hong Ju;Park, Mi Sun;Lim, Soo Yeon;Yoo, Seon Hee;Lee, Sun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Purpose Hepatitis B virus (hepatitis B virus, HBV) infection is a worldwide major public health problem and it is known as a major cause of chronic hepatitis, liver cirrhosis and liver cancer. And serologic tests of hepatitis B virus is essential for diagnosing and treating these diseases. In addition, with the development of molecular diagnostics, the detection of HBV DNA in serum diagnoses HBV infection and is recognized as an important indicator for the antiviral agent treatment response assessment. We performed HBeAg assay using Immunoradiometric assay (IRMA) and Chemiluminescent Microparticle Immunoassay (CMIA) in hepatitis B patients treated with antiviral agents. The detection rate of HBV DNA in serum was measured and compared by RT-PCR (Real Time - Polymerase Chain Reaction) method Materials and Methods HBeAg serum examination and HBV DNA quantification test were conducted on 270 hepatitis B patients undergoing anti-virus treatment after diagnosis of hepatitis B virus infection. Two serologic tests (IRMA, CMIA) with different detection principles were applied for the HBeAg serum test. Serum HBV DNA was quantitatively measured by real-time polymerase chain reaction (RT-PCR) using the Abbott m2000 System. Results The detection rate of HBeAg was 24.1% (65/270) for IRMA and 82.2% (222/270) for CMIA. Detection rate of serum HBV DNA by real-time RT-PCR is 29.3% (79/270). The measured amount of serum HBV DNA concentration is $4.8{\times}10^7{\pm}1.9{\times}10^8IU/mL$($mean{\pm}SD$). The minimum value is 16IU/mL, the maximum value is $1.0{\times}10^9IU/mL$, and the reference value for quantitative detection limit is 15IU/mL. The detection rates and concentrations of HBV DNA by group according to the results of HBeAg serological (IRMA, CMIA)tests were as follows. 1) Group I (IRMA negative, CMIA positive, N = 169), HBV DNA detection rate of 17.7% (30/169), $6.8{\times}10^5{\pm}1.9{\times}10^6IU/mL$ 2) Group II (IRMA positive, CMIA positive, N = 53), HBV DNA detection rate 62.3% (33/53), $1.1{\times}10^8{\pm}2.8{\times}10^8IU/mL$ 3) Group III (IRMA negative, CMIA negative, N = 36), HBV DNA detection rate 36.1% (13/36), $3.0{\times}10^5{\pm}1.1{\times}10^6IU/mL$ 4) Group IV(IRMA positive, CMIA negative, N = 12), HBV DNA detection rate 25% (3/12), $1.3{\times}10^3{\pm}1.1{\times}10^3IU/mL$ Conclusion HBeAg detection rate according to the serological test showed a large difference. This difference is considered for a number of reasons such as characteristics of the Ab used for assay kit and epitope, HBV of genotype. Detection rate and the concentration of the group-specific HBV DNA classified serologic results confirmed the high detection rate and the concentration in Group II (IRMA-positive, CMIA positive, N = 53).

[Ru(phen)2(dppz)]2+ Assemble on the Surface of the SDS Micelle and Its Application for the Determination of DNA

  • Chen, Fang;Huang, Jianping;He, Zhike
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1655-1658
    • /
    • 2006
  • The solution of $[Ru(phen)_2(dppz)]^{2+}$ and SDS has high Resonance Light Scattering (RLS) signals due to $[Ru(phen)_2(dppz)]^{2+}$ assemble on the surface of the SDS micelle. Because of the high affinity ($KB\geq10^6\;L\;mol^{-1}$) between $[Ru(phen)_2(dppz)]^{2+}$ and DNA, the adding of DNA in the solution of $[Ru(phen)_2(dppz)]^{2+}$-SDS makes the dissociation of $[Ru(phen)_2(dppz)]^{2+}$-SDS, and results in decreasing of the RLS signals and increasing of the absorbance. Based on this, a novel method is proposed for DNA assay. Under optimum condition, good linear relationship was obtained within the concentration range of 0.018-1.26 $\mu g\;mL^{-1}$, the linear equation is $I_{RLS}$ = 504.8-348.8 c (c: $\mu g\;mL^{-1}$) and the correlation coefficient (r) is 0.9992. The detect limit for calf thymus DNA is 8.6 ng $mL^{-1}$. The proposed method was successful applied to determine the extracted colibacillus plasmid DNA.

Interaction of ct-DNA with 2,4-Dihydroxy Salophen

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh;Mirkhani, Valiollah
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1973-1977
    • /
    • 2009
  • In the present study, at first, 2,4-Dihydroxy Salophen (2,4-DHS), has been synthesized by combination of 1, 2-diaminobenzene and 2,4-dihydroxybenzaldehyde in a solvent system. This ligand containing meta-quinone functional groups were characterized using UV-Vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and 2,4-DHS, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of 2,4-DHS with ct-DNA was found to be (1.1 ${\pm}\;0.2)\;{\times}\;10^4\;M^{-1}.$ The fluorescence study represents the quenching effect of 2,4-DHS on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of 2,4-DHS concentration. Thermal denaturation experiments represent the increasing of melting temperature of DNA (about 3.5 ${^{\circ}C}$) due to binding of 2,4-DHS. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.