• Title/Summary/Keyword: DNA Chip

Search Result 361, Processing Time 0.03 seconds

Detection of Fish Rhabdoviruses using a Diagnostic Fish Rhabdovirus DNA Chip

  • Kim, Young-Ju;Lee, Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.185-187
    • /
    • 2005
  • We tested the in vivo ability of a DNA chip to detect virus-specific genes from virus-infected olive flounder Paralichthys olivaceus and rainbow trout Oncorhynchus mykiss. Target cDNA was obtained from total RNA of virus infected cell lines by reverse transcription (RT) and was labeled with fluorescent dye (Cy5-dUTP). The results show the successful detection of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicaemia virus (VHSV) genes in the virus-infected fishes.

Development of New Biochip and Genome Detection Using an Non-labeling Target DNA (차세대형 바이오칩의 개발 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Kawai, Tomoji
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.51-53
    • /
    • 2002
  • This research aims to develop a multiple channel electrochemical DNA chip using micro-fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore, it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

DNA Chip Technologies

  • Hwang, Seoung-Yong;Lim, Geun-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2000
  • The genome sequencing project has generated and will contitute to generate enormous amounts of sequence data. Since the first complete genome sequence of bacterium Haemophilus in fluenzae was published in 1995, the complete genome sequences of 2 eukaryotic and about 22 prokaryotic organisms have detemined. Given this everincreasing amounts of sequence information, new strategies are necessary to efficiently pursue the phase of the geome project- the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip technology was developed to efficienfly identify the differential expression pattern of indepondent biogical samples. DNA chip provides a new tool for genome expreesion analysis that may revolutionize revolutionize many aspects of human kife including mew surg discovery and human disease diagnostics.

  • PDF

Development of DNA Chip Microarray by Using Secondary-step immobilization methods (2단계 고정화법을 이용한 DNA칩 마이크로어레이의 개발)

  • Yoon, Hee-Chan;Kim, Do-Kyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.263-265
    • /
    • 2002
  • We have used the secondary-step immobilization methods based on the chip pattern of hydrophobic self-assembly layers to assemble microfabricated particles onto the chip pattern. Immobilization of DNA, fabrication of the particles and the chip pattern, arrangement of the particles on the chip pattern, and recognition of each using DNA fluorescence measurement were carried out. Establishing the walls, the arrangement stability of the particles was improved. Each DNA is able to distinguish by using the lithography process on the particles. Advantages of this method are process simplicity, wide applicability and stability. It is thought that this method can be applicable as a new fabrication technology to develop a minute integration type biosensor microarray.

  • PDF

Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding (Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발)

  • Kim S.K.;Choi D.S.;Yoo Y.E.;Je T.J.;Kim T.H.;Whang K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF

Interaction of Phenolic Compound-Specific Activator with Its Promoter using SPR-Based DNA Chip (SPR 근거 DNA 칩을 이용한 페놀 화합물 특이 CapR 조절 단백질과 촉진유전자와의 상호작용 연구)

  • 박선미;박후휘;임운기;신혜자
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.99-104
    • /
    • 2003
  • Aromatic compounds are of major concern among environmental pollutants due to their toxicity and persistence. To monitor aromatic compounds in a real time with a better sensitivity, a new method of SPR (surface plasmon resonance) based on DNA chip (Biacore 3000) was developed here. It is thought that CapR regulatory protein as a complex with phenol, could bind to their corresponding promoter, Po. Biotinylated DNA oligomers for the promoter was synthesized by PCR and coupled onto streptoavidin-linked CM5-chip. CapR regulatory proteins were purified after cloning their genes in pET21a (+) vector and expressing proteins. The interaction was assessed by the system where the regulatory proteins flowed with or without phenol through the cells of DNA chip. CapR regulatory protein even in the presence of phenol had no response to its promoter, Po, suggesting that other factor(s) might be required for the activation of Po promoter. The present work reveals a promising possibility of the SPR-based DNA chip in monitoring specific environmental pollutants in a real time.

Automatic Reading System for On-off Type DNA Chip

  • Ryu, Mun-Ho;Kim, Jong-Dae;Kim, Jong-Won
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.189-193
    • /
    • 2006
  • In this study we propose an automatic reading system for diagnostic DNA chips. We define a general specification for an automatic reading system and propose a possible implementation method. The proposed system performs the whole reading process automatically without any user intervention, covering image acquisition, image analysis, and report generation. We applied the system for the automatic report generation of a commercialized DNA chip for cervical cancer detection. The fluorescence image of the hybridization result was acquired with a $GenePix^{TM}$ scanner using its library running in HTML pages. The processing of the acquired image and the report generation were executed by a component object module programmed with Microsoft Visual C++ 6.0. To generate the report document, we made an HWP 2002 document template with marker strings that were supposed to be searched and replaced with the corresponding information such as patient information and diagnosis results. The proposed system generates the report document by reading the template and changing the marker strings with the resultant contents. The system is expected to facilitate the usage of a diagnostic DNA chip for mass screening by the automation of a conventional manual reading process, shortening its processing time, and quantifying the reading criteria.

The Application of DNA Chip Technology to Identify Herbal Medicines: an Example from the Family Umbelliferae

  • Kim, Pil-Ho;Park, Jisoo;Kim, Yeong Shik;Suh, Youngbae
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.185-191
    • /
    • 2015
  • Comparative molecular analysis has been frequently adopted for the authentication of herbal medicines as well as the identification of botanical origins. Roots and rhizomes of the family Umbelliferae have been used as traditional herbal medicines to relieve various symptoms such as inflammation, neuralgia and paralysis in countries of East Asia. Since most herbal medicines of the Umbelliferae roots or rhizomes are generally supplied in the form of dried slices, morphological examination does not often provide sufficient evidence to identify the botanical origin. Using species-specific probes developed by the comparative analysis of nrDNA ITS sequences, a DNA chip was developed to identify herbal medicines for 13 species in the Umbelliferae. The developed DNA Chip proves its potential as a rapid, sensitive and effective tool for authenticating herbal medicines in future.

Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis (DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • A program for integrated gene expression profile analysis such as hierarchical clustering, K-means, fuzzy c-means, self-organizing map(SOM), principal component analysis(PCA), and singular value decomposition(SVD) was made for DNA chip data anlysis by using Matlab. It also contained the normalization method of gene expression input data. The integrated data anlysis program could be effectively used in DNA chip data analysis and help researchers to get more comprehensive analysis view on gene expression data of their own.

  • PDF

Electrochemical Gene Detection Using Microelectrode Array on a DNA Chip

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.145-148
    • /
    • 2004
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by a DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 and concentrated at the electrode surface through association with the formed hybrid. This suggested that this DNA chip could recognize the sequence specific genes.