• Title/Summary/Keyword: DNA센서

Search Result 58, Processing Time 0.023 seconds

Development of an SH-SAW sensor for detection of DNA (DNA 측정용 SH-SAW 센서 개발)

  • Hur Youngjune;Seon Jooheon;Roh Yongrae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.319-322
    • /
    • 2004
  • 본 연구에서는 DNA의 상보적인 결합을 이용하여 DNA 혼성화 반응을 감지할 수 있는 SH형 SAW 센서를 개발하였다. 측정에 사용된 DNA는 15개의 염기를 가진 올리고 뉴클레오티드를 사용하였으며 이에 대해 상보적 결합이 가능한 염기서열을 가진 것과 그렇지 않은 미스매치 형태의 DNA 올리고뉴클레오티드를 이용하여 DNA 혼성화 반응 특성을 측정하였다. SH형 SAW 센서는 압전 단결정 $LiTaO_{3}$를 사용하여 100 MHz 발진되는 형태로 제작하였으며, 센서의 지연선 위에 Ti/Au 층을 증착하여 SH기가 수식된 탐침 DNA의 고정화가 가능하게 하였다. 제작된 센서는 Au가 증착된 박막위에 탐침 DNA를 SAM 방법으로 고정화 시켰을 경우와 고정화된 탐침 DNA와 표적 DNA와의 혼성화 반응을 시키고 난 후의 센서의 주파수 변화를 각각 측정하였다. 개발된 DNA 혼성화 반응 측정용 SH형 SAW센서는 DNA 혼성화 특성에 기인한 질량하중 효과에 따른 안정적인 주파수 변화를 나타내었다.

  • PDF

Improvement in Sensitivity by Increasing the Frequency of SAW Sensors for DNA Detection (DNA 측정용 SAW 센서의 주파수 증대에 의한 감도향상)

  • Sakong, Jung-Yul;Kim, Jae-Ho;Lee, Soo-Suk;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper. we have studied improvement in sensitivity by increasing the frequency of SAW sensors for detecting the immobilization and hybridization of DNA. The sensor consists of twin SAW delay lines operating at 200MHz, a sensing channel and a reference channel. fabricated on $36^{\circ}$ rotated Y-cut X-propagation $LiTaO_3$ crystals. The optimum concentration of probe and target DNA was decided for the improvement of detection mechanism. and digital syringe pump system was used to reduce the human errors. The hybridization between immobilized probe DNA and target DNA on the gold-coated delay line results in mass loading on the delay line of the sensing channel. Thus, the relative frequency change was monitored in relation to the mass loading. The measurement results showed a good response of the sensor to the DNA hybridization with a maximum sensitivity level up to 0.066ng/m1/Hz.

DNA 템플릿을 활용한 전이금속 칼코겐화합물 트랜지스터 기반 바이오센서 연구

  • O, Ae-Ri;Gang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.213.1-213.1
    • /
    • 2015
  • Field effect transistors (FETs)를 기반으로 한 바이오센서는 빠른 응답속도, 저비용, label-free 등을 이유로 각광받고 있다. 그러나 3D 구조를 기반으로 한 FETs 바이오센서의 낮은 sensitivity의 한계점을 지니며, 이를 극복하기 위해 1D 구조의 나노튜브 등을 활용하였으나 여전히 높은 sensitivity의 확보는 힘들다. 최근에는 이러한 문제점을 극복하기 위해 이차원 반도체 물질 중 하나인 Transition metal dichalcogenide (TMD)를 이용하여, 700 이상의 sensitivity를 지니는 pH센서 및 100 이상의 sensitivity를 지니는 바이오센서가 보고되었다. 하지만 이보다 더 높은 정확성 및 반응성을 높이기 위한 연구는 부족한 실정이다. 우리는 DNA 템플릿을 이용하여, TMD FET 기반 pH 및 바이오센서의 반응성을 극대화시키는 연구를 선보인다. DNA는 7~8정도의 유전상수 (K)를 가지는 물질로 기존 $SiO_2$(K=3.9)보다 높은 유전상수를 가지며 두께를 0.7 nm로 매우 얇게 형성할 수 있는 장점이 있다. 이는 FET 기반 바이오센서의 표면 캐패시턴스를 높여 sensitivity를 극대화할 수 있으며, 기존에 사용된 high-k 기반 바이오센서와 비교하여도 약 10배 이상의 sensitivity 향상을 노릴 수 있다. 또한, TMD 물질로 우리는 $WSe_2$를 선택하였으며, pH 용액의 receptor로써 우리는 3-Aminopropyltriethoxysilane (APTES)를 활용하였고, 템플릿으로 사용된 DNA는 DX tile 및 Ring type의 두 가지를 사용하였다. 추가로, DNA의 phosphate backbone을 중성화시키고 DNA의 base pairing의 charge 안정화를 위해 구리 이온($Cu^{2+}$) 및 란타넘족($Tb^{3+}$)을 추가하였다. 완성된 바이오센서의 pH 센싱을 위해 우리는 pH 6,7,8의 표준 용액을 사용하였으며, 재현성 및 반복성의 확인하였다.

  • PDF

Development of an SH-SAW Sensor for Detection of DNA (DNA 측정용 SH-SAW 센서 개발)

  • Hur Youngjune;Pak Yukeun Eugene;Roh Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • We have developed SH (shear horizontal) surface acoustic wave (SAW) sensors for detection of the immobilization and hybridization of DNA (deoxyribonucleic acid) on the gold coated delay line of transverse SAW devices. The experiments of DNA immobilization and hybridization were performed with 15-mer oligonucleotides (probe and complementary target DNA). The sensor consists of twin SAW delay line oscillators operating at 100 MHz fabricated on $36^{\circ}$ rotated Y-cut $LiTaO_3$ piezoelectric single crystals. The relative change in the frequency of the two oscillators was monitored to detect the hybridization between target DNA and immobilized probe DNA in pH 7.4 PBS (phosphate buffered saline) solution. The measurement results showed a good response of the sensor to the mass loading effects of the DNA immobilization and hybridization with the sensitivity up to $1.55{\cal}ng/{\cal}ml/Hz$.

Covalent Binding of DNA onto Glass Support for the Construction of Genosensor

  • Jeong, U-Seong;Baek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.709-710
    • /
    • 2000
  • Genosensor technology utilizes a patterned array of DNA molecules immobilized on solid supports for biomedical analysis. The detection capability of the sensor depended mainly on the way the capture probes are attached to the support as well as the sequence. We compared two different. coupling methods currently used to covalently graft DNA molecules onto a glass surface.

  • PDF

Trends in Device DNA Technology Trend for Sensor Devices (센서 기반의 디바이스 DNA 기술 동향)

  • Kim, Juhan;Lee, Sangjae;Oh, Mi Kyung;Kang, Yousung
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Just as it is possible to distinguish people by using physical features, such as fingerprints, irises, veins, and faces, and behavioral features, such as voice, gait, keyboard input pattern, and signatures, the an IoT device includes various features that cannot be replicated. For example, there are differences in the physical structure of the chip, differences in computation time of the devices or circuits, differences in residual data when the SDRAM is turned on and off, and minute differences in sensor sensing results. Because of these differences, Sensor data can be collected and analyzed, based on these differences, to identify features that can classify the sensors and define them as sensor-based device DNA technology. As Similar to the biometrics, such as human fingerprints and irises, can be authenticatedused for authentication, sensor-based device DNA can be used to authenticate sensors and generate cryptographic keys that can be used for security.

Development of DNA Sensor Using Magnetic Iron Oxide Nanoparticle (자성 산화철(iron oxide) 나노입자를 이용한 DNA 센서 개발)

  • Nam, Ki-Chang;Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.51-56
    • /
    • 2011
  • The surface of magnetic iron oxide nanoparticles (${\gamma}-Fe_2O_3$) is functionalized ($-NH_2$, -COOH) with bifunctional organic molecules and evaluated using FT-IR (Fourier transform infrared spectroscopy). We immobilize 21-base pair probe DNA and hybridize fluorescence-labeled (Cy5) target DNA onto the functionalized iron oxide nanoparticles. The fluorescence images obtained from a confocal microscopy show that the functionalized iron oxide nanoparticles should detect the hybridization of complementary and noncomplementary DNA.

Sensitivity of a charge-detecting label-free DNA sensor using field-effect transistors (FETs) depending on the Debye length (전계효과 트랜지스터(FETs)를 이용한 전하 검출형 DNA 센서에서 Debye length에 따른 검출 감도)

  • Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.86-90
    • /
    • 2011
  • The effects of cations are very important in field-effect transistors (FETs) type DNA sensors detecting the intrinsic negative charge between single-stranded DNA and double-stranded DNA without labeling, because the intrinsic negative charge of DNA is neutralized by cations in electrolyte solution. We consider the Debye length, which depends on the concentration of cations in solution, to detect DNA hybridization based on the intrinsic negative charge of DNA. The Debye length is longer in buffer solution with a lower concentration of NaCl and the intrinsic negative charge of DNA is more effective on the channel surface in longer Debye length solution. The shifts in the gate voltage by DNA hybridization with complementary target DNA are 21 mV in 1 mM NaCl buffer solution, 7.2 mV in 10 mM NaCl buffer solution, and 5.1 mV in 100 mM NaCl buffer solution. The sensitivity of FETs to detect DNA hybridization based on charge detection without labeling depends on the Debye length.

DNA Sequencing Analysis Technique by Using Solid-State Nanopore (고체상 나노구멍을 이용한 DNA 염기서열 분석기술)

  • Kim, Tae-Heon;Pak, James Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.359-366
    • /
    • 2012
  • Nanopore DNA sequencing is an emerging and promising technique that can potentially realize the goal of a low-cost and high-throughput method for analyzing human genome. Especially, solid-state nanopores have relatively high mechanical stability, simple surface modification, and facile fabrication process without the need for labeling or amplification of PCR (polymerized chain reaction) in DNA sequencing. For these advantages of solid-sate nanopores, the use of solid-state nanopores has been extensively considered for developing a next generation DNA sequencing technology. Solid-state nanopore sequencing technique can determine and count charged molecules such as single-stranded DNA, double-stranded DNA, or RNA when they are driven to pass through a membrane nanopore between two electrolytes of cis-trans chambers with applied bias voltage by measuring the ionic current which varies due to the existence of the charged particles in the nanopore. Recently, many researchers have suggested that nanopore-based sensors can be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000.