• Title/Summary/Keyword: DIBL

Search Result 89, Processing Time 0.027 seconds

SPICE Model of Drain Induced Barrier Lowering in Junctionless Cylindrical Surrounding Gate (JLCSG) MOSFET (무접합 원통형 MOSFET에 대한 드레인 유도 장벽 감소의 SPICE 모델)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.278-282
    • /
    • 2018
  • We propose a SPICE model of drain-induced barrier lowering (DIBL) for a junctionless cylindrical surrounding gate (JLCSG) MOSFETs. To this end, the potential distribution in the channel is obtained via the Poisson equation, and the threshold voltage model is presented for the JLCSG MOSFET. In a JLCSG nano-structured MOSFET, a channel radius affects the carrier transfer as well as the channel length and oxide thickness; therefore, DIBL should be expressed as a function of channel length, channel radius, and oxide thickness. Consequently, it can be seen that DIBLs are proportional to the power of -3 for the channel length, 2 for the channel radius, 1 for the thickness of the oxide film, and the constant of proportionality is 18.5 when the SPICE parameter, the static feedback coefficient ${\eta}$, is between 0.2 and 1.0. In particular, as the channel radius and the oxide film thickness increase, the value of ${\eta}$ remains nearly constant.

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Analysis of Transport Characteristics for DGMOSFET according to Channel Dopiong Concentration Using Series (급수를 이용한 DGMOSFET의 채널도핑농도에 대한 전송 특성 분석)

  • Han, Jihyung;Jung, Hakkee;Jeong, Dongsoo;Lee, Jongin;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.845-847
    • /
    • 2012
  • In this paper, the transport characteristics for doping concentration in the channel has been analyzed for DGMOSFET. The Possion equation is used to analytical. The DGMOSFET is extensively been studying because of advantages to be able to reduce the short channel effects(SCEs) to occur in conventional MOSFET. Since SCEs have been occurred in subthreshold region including threshold region, the analysis of transport characteristics in subthreshold region is very important. The threshold voltage roll-off and DIBL have been with various of doping concentration for DGMOSFET in this study.

  • PDF

Threshold Voltage Dependence on Bias for FinFET using Analytical Potential Model

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.107-111
    • /
    • 2010
  • This paper has presented the dependence of the threshold voltage on back gate bias and drain voltage for FinFET. The FinFET has three gates such as the front gate, side and back gate. Threshold voltage is defined as the front gate bias when drain current is 1 micro ampere as the onset of the turn-on condition. In this paper threshold voltage is investigated into the analytical potential model derived from three dimensional Poisson's equation with the variation of the back gate bias and drain voltage. The threshold voltage of a transistor is one of the key parameters in the design of CMOS circuits. The threshold voltage, which described the degree of short channel effects, has been extensively investigated. As known from the down scaling rules, the threshold voltage has been presented in the case that drain voltage is the 1.0V above, which is set as the maximum supply voltage, and the drain induced barrier lowing(DIBL), drain bias dependent threshold voltage, is obtained using this model.

Some Device Design Considerations to Enhance the Performance of DG-MOSFETs

  • Mohapatra, S.K.;Pradhan, K.P.;Sahu, P.K.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.291-294
    • /
    • 2013
  • When subjected to a change in dimensions, the device performance decreases. Multi-gate SOI devices, viz. the Double Gate MOSFET (DG-MOSFET), are expected to make inroads into integrated circuit applications previously dominated exclusively by planar MOSFETs. The primary focus of attention is how channel engineering (i.e. Graded Channel (GC)) and gate engineering (i.e. Dual Insulator (DI)) as gate oxide) creates an effect on the device performance, specifically, leakage current ($I_{off}$), on current ($I_{on}$), and DIBL. This study examines the performance of the devices, by virtue of a simulation analysis, in conjunction with N-channel DG-MOSFETs. The important parameters for improvement in circuit speed and power consumption are discussed. From the analysis, DG-DI MOSFET is the most suitable candidate for high speed switching application, simultaneously providing better performance as an amplifier.

Analytical modeling for the short-channel MOSFET (Short-Channel MOSFET의 해석적 모델링)

  • 홍순석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1290-1298
    • /
    • 1992
  • In this paper, the Poisson's equation is solved two-dimensionally without employing any fitting parameters, and the model formulation of a short-channel MOSFET is accomplished fully analytically. It automatically derives a very accurate drain current expression that can be used simultaneously for strong inversion, subthreshold, and saturation regions. Furthermore, this model gives a unified explanation for the short-channel effect, the body effect, the DIBL effect, and even the variation of the effective carrier mobility. The obtained expression of the threshold voltage also includes the dependence on the oxide thickness, the n+ junction depth, and temperature.

  • PDF

3-D Characterizing Analysis of Buried-Channel MOSFETs (매몰공핍형 MOS 트랜지스터의 3차원 특성 분석)

  • Kim, M. H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.162-163
    • /
    • 2000
  • We have observed the short-channel effect, narrow-channel effect and small-geometry effect in terms of a variation of the threshold voltage. For a short-channel effect the threshold voltage was largely determined by the DIBL effect which stimulates more carrier injection in the channel by reducing the potential barrier between the source and channel. The effect becomes more significant for a shorter-channel device. However, the potential, field and current density distributions in the channel along the transverse direction showed a better uniformity for shorter-channel devices under the same voltage conditions. The uniformity of the current density distribution near the drain on the potential minimum point becomes worse with increasing the drain voltage due to the enhanced DIBL effect. This means that considerations for channel-width effect should be given due to the variation of the channel distributions for short-channel devices. For CCDs which are always operated at a pinch-off state the channel uniformity thus becomes significant since they often use a device structure with a channel length of > 4 ${\mu}{\textrm}{m}$ and a very high drain (or diffusion) voltage. (omitted)

  • PDF

Schottky Barrier Field-Effect Transistor의 소자의 특성 및 성능 비교분석

  • Kim, Gyeong-Tae;Park, Hyeok-Jun;U, Ji-Yun;Park, Yeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.372-375
    • /
    • 2017
  • Metal-oxide-semiconductor Field-Effect transistor (MOSFET)을 대체할 기술로서 제안된 Schottky Barrier MOSFET (SB-MOSFET)가 제시되고 있다. 본 연구에서는 SB-MOSFET와 MOSFET을 다양한 소자 파라미터를 변화시킴으로서 양자역학적 전하수송 계산을 바탕으로 특성을 분석한다. MOSFET과 SB-MOSFET은 채널 두께 ($T_{Si}$)가 감소함에 따라 전류량은 증가하고 SS와 DIBL은 증가하였고 Overlap에서는 SS와 DIBL이 커지고 Underlap에서는 작아짐을 보였고 SB-MOSFET는 특히 그 폭이 컸다. 또한 SB 높이가 낮을수록 SB-MOSFET의 전류량이 증가하고 SS는 감소하였고 마찬가지로 Source와 Drain doping concentration이 낮을수록 MOSFET의 전류량은 증가하고 SS는 감소하였다. MOSFET과 SB-MOSFET의 경향은 대체로 비슷하나 변화량의 차이 등이 있었다.

  • PDF

A Study on the 0.5μm Dual Gate High Voltage CMOS Process for Si Liquid Display System (실리콘 액정표시 장치 시스템을 위한 00.5μm 이중 게이트 고전압 CMOS 공정 연구)

  • 송한정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1021-1026
    • /
    • 2002
  • As the development of semiconductor process technology continue to advance, ICs continue their trend toward higher performance low power system-on-chip (SOC). These circuits require on board multi power supply. In this paper, a 0.5 ㎛ dual date oxide CMOS Process technology for multi-power application is demonstrated. 5 V and 20 V devices fabricated by proposed process is measured. From 5 V devices using dual gate precess, we got almost the same characteristics as are obtained from standard 5 V devices. And the characteristics of the 20 V device demonstrates that 3 ㎛ devices with minimum gate length are available without reliability degradation. Electrical parameters in minimum 3 ㎛ devices are 520 ㎂/㎛ current density, 120 ㎷ DIBL, 24 V BV for NMOS and ,350 ㎂/㎛ current density, 180 ㎷ DIBL, 26 V BV for PMOS, respectively.

Characteristics analysis of Sub-50nm Double Gate MOSFET (Sub-50nm Double Gate MOSFET의 특성 분석)

  • 김근호;고석웅;이종인;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.486-489
    • /
    • 2002
  • In this paper, we have investigated characteristics of sub-50nm double gate MOSFET. From I-V characteristics, we obtained =510$\mu$A/${\mu}{\textrm}{m}$ at VMG=VDS=1.5V and VSG=3.0V. Then, the transconductance is 111$\mu$A/V, subthreshold slope is 86mV/dec and DIBL (Drain Induced Barrier Lowering) is 51.3mV. Also, we have presented that TCAD simulator is suitable for device simulation.

  • PDF