• 제목/요약/키워드: DI model

검색결과 402건 처리시간 0.027초

MOS 제어 다이리스터의 특성 해석 및 시뮬레이션을 위한 모델 (Switching Characteristics and PSPICE Modeling for MOS Controlled Thyristor)

  • 이영국;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.237-239
    • /
    • 1994
  • The MOS-controlled thyristor(MCT) is a new power semi-conductor device that combines four layers thyristor structure presenting regenerative action and MOS-gate providing controlled turn-on and turn-off. The MCT has very fast switching speed owing to voltage controlled MOS-gate, and very low on-state voltage drop resulting from regenerative action of four layers thyristor structure. In addition, because of a higher dv/dt rating and di/dt rating, gate drive circuit and snubber circuit can be simpler comparing to other power switching devices. So recently much interest and endeavor is being applied to develop the performance and ratings of the MCT. This paper describes the switching characteristic of the MCT for its practical applications and presents a model for PSPICE circuit simulation. The model for PSPICE circuit simulation is compared to the experimental result using MCTV75P60F1 made by Harris co..

  • PDF

Buckling of porosity-dependent bi-directional FG nanotube using numerical method

  • Wang, Haiquan;Zandi, Yousef;Gholizadeh, Morteza;Issakhov, Alibek
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.493-507
    • /
    • 2021
  • This article focused on studying the buckling behavior of two-dimensional functionally graded (2D-FG) nanosize tubes, including porosity based on first shear deformation and higher-order theory of tube. The nano-scale tube is simulated based on the nonlocal gradient strain theory, and the general equations and boundary conditions are derived using Hamilton's principle for the Zhang-Fu's tube model (as higher-order theory) and Timoshenko beam theory. Finally, the derived equations are solved using a numerical method for both simply-supported and clamped boundary conditions. The parametric study is performed to study the effects of different parameters such as axial and radial FG power indexes, porosity parameter, nonlocal gradient strain parameters on the buckling behavior of di-dimensional functionally graded porous tube.

RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링 (Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+)

  • 김준성;서일원;신재현;정성현;윤세훈
    • 한국수자원학회논문집
    • /
    • 제54권7호
    • /
    • pp.495-507
    • /
    • 2021
  • 최근 도시와 산업의 발달과 함께 하천, 호소 등 수환경에서의 수질 오염사고가 빈번하게 일어나고 있어 어류폐사, 취수중단, 친수활동 저해 등 심각한 수생태계 및 사회경제적 피해가 발생하고 있다. 따라서 이에 대한 대응책으로 수질모델링을 통한 오염물질의 이동 및 확산에 대한 사전 예측이 필요하다. 본 연구에서는 2차원 하천흐름/수질해석 프로그램인 RAMS+의 현장 적용성 및 예측 정확도를 검증하기 위해 만곡하천인 섬강에서 현장실험을 수행하였다. 모의결과 흐름해석모형 HDM-2Di와 수질해석모형 CTM-2D-TX는 현장실험에서 관측된 2차원 흐름 특성과 오염물질의 거동 및 혼합 양상을 정확하게 재현하였다. 특히 하천의 양안과 만곡부에서 국부적으로 발생하는 저유속 흐름에 의해 오염물질의 거동이 지체되는 저장대 효과를 정확하게 모의하였다. 나아가서 하천 만곡부에서 이차류가 야기하는 오염물질 3차원적 혼합 양상을 2차원 분산계수를 통해 효과적으로 재현하였다. 오염물질의 위험농도 체류시간은 취수중단 기간을 결정하는데 있어 매우 중요한 요소이다. 본 연구에서는 CTM-2D-TX 모의결과를 기반으로 오염물질 위험농도 체류시간을 계산하였고, 위험농도 체류시간의 공간적 분포가 하폭방향으로 큰 편차를 지니고 있음을 확인하였다. 이러한 오염물질의 2차원적 체류 특성은 1차원 수질모형을 통해서는 예측이 불가능하기 때문에 효율적이고 정확한 수질사고대응을 위해 2차원 수질모형의 활용이 필요함을 본 연구의 결과는 시사하고 있다.

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

The Implementation of IFRS 9 in Gulf Banks: A Comprehensive Analysis

  • ABUADDOUS, Murad Y.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권8호
    • /
    • pp.145-155
    • /
    • 2022
  • Since 2014, the IFRS 9 has been the focus of the attention of many scholars across disciplines. The futuristic prediction of bank loan provision via a flexible ECL model has been observed as a game changer from the prior models offered in IAS 39. This study has two objectives; the first is to examine the impact on loan loss provisions (LLP), nonperforming loans (NPL), and the impairment loan losses (ILL) after the IFRS 9 in gulf banks. The second is to capture any variation in LLP, NPL, and ILL before and after IFRS9. The study used the two-way fixed effect model (TWFE) estimation and the DiD approach to attain its objectives. 54 gulf banks were selected from the periods between 2012 and 2020. The results indicate that LLP has significantly increased after the transition to IFRS 9, while the NPL has significantly decreased. The results did not capture a significant change in ILL after IFRS9 implementation. The results also indicate more consistency in LLP and NPL reporting after implementing the ECL model adopted in IFRS9. The study concluded that ECL model outcomes are in tandem with prior observation worldwide and pointed out some improvement opportunities for the future.

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

해양 석유 생산 및 수송 최적화 문제에 관한 연구 (A Study on the Optimization Problem for Offshore Oil Production and Transportation)

  • 김창수;김시화
    • 한국항해항만학회지
    • /
    • 제39권4호
    • /
    • pp.353-360
    • /
    • 2015
  • 해양 석유 생산은 '해양'이라는 특성에 기인하는 여러 가지 변수를 동반하면서 막대한 비용과 시간을 필요로 한다. 모든 관련된 프로세스는 인명, 환경 그리고 재산의 손실을 줄이기 위한 치밀한 일련의 계획에 의하여 통제된다. 이 논문은 해양 석유 생산 및 수송의 최적화 문제를 다룬다. 문제 영역의 범위를 정의하기 위해 해양 석유 생산 및 수송 네트워크를 제시하고 그 문제를 해결하기 위한 혼합정수계획모형을 구축하였다. 제안된 최적화 모형의 타당성을 확인하기 위해 가상의 해양 유전과 수요 시장을 바탕으로 MS Office Excel의 해찾기를 이용하여 계산실험들을 수행하였다. 해양 석유 생산 및 수송 네트워크 하위 흐름은 해양 유전에서 생산된 원유를 수요 시장으로 배분하는 해사수송문제가 된다. 이 해사수송문제를 해결하기 위해 집합 패킹 모형을 이용하여 구축된 MoDiSS(Model-based DSS in Ship Scheduling)를 사용하였다. 이러한 연구결과들은 실제적인 해양 석유 생산 및 수송 최적화 문제에 의미 있게 적용될 수 있으리라 사료된다.

A many-objective optimization WSN energy balance model

  • Wu, Di;Geng, Shaojin;Cai, Xingjuan;Zhang, Guoyou;Xue, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.514-537
    • /
    • 2020
  • Wireless sensor network (WSN) is a distributed network composed of many sensory nodes. It is precisely due to the clustering unevenness and cluster head election randomness that the energy consumption of WSN is excessive. Therefore, a many-objective optimization WSN energy balance model is proposed for the first time in the clustering stage of LEACH protocol. The four objective is considered that the cluster distance, the sink node distance, the overall energy consumption of the network and the network energy consumption balance to select the cluster head, which to better balance the energy consumption of the WSN network and extend the network lifetime. A many-objective optimization algorithm to optimize the model (LEACH-ABF) is designed, which combines adaptive balanced function strategy with penalty-based boundary selection intersection strategy to optimize the clustering method of LEACH. The experimental results show that LEACH-ABF can balance network energy consumption effectively and extend the network lifetime when compared with other algorithms.

유동형 미세 열유속 센서의 설계 (Design of The Micro Fluidic Heat Flux Sensor)

  • 김정균;조성천;이선규
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.138-145
    • /
    • 2009
  • A suspended membrane micro fluidic heat flux sensor that is able to measure the heat flow rate was designed and fabricated by a complementary-metal-oxide-semiconductor-compatible process. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, low pass filter, and lock-in amp has enabled the resolution of 50 nW power and provides the sensitivity of $11.4\;mV/{\mu}W$. The heater modulation method was used to eliminate low frequency noises from sensor output. It is measured with various heat flux fluid of DI-water to test as micro fluidic application. In order to estimate the heat generation of samples from the output measurement of a micro fluidic heat-flux sensor, a methodology for modeling and simulating electro-thermal behavior in the micro fluidic heat-flux sensor with integrated electronic circuit is presented and validated. The electro-thermal model was constructed by using system dynamics, particularly the bond graph. The electro-thermal system model in which the thermal and the electrical domain are coupled expresses the heat generation of samples converts thermal input to electrical output. The proposed electro-thermal system model shows good agreement with measured output voltage response in transient state and steady-state.

Poly-crystalline Silicon Thin Film Transistor: a Two-dimensional Threshold Voltage Analysis using Green's Function Approach

  • Sehgal, Amit;Mangla, Tina;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권4호
    • /
    • pp.287-298
    • /
    • 2007
  • A two-dimensional treatment of the potential distribution under the depletion approximation is presented for poly-crystalline silicon thin film transistors. Green's function approach is adopted to solve the two-dimensional Poisson's equation. The solution for the potential distribution is derived using Neumann's boundary condition at the silicon-silicon di-oxide interface. The developed model gives insight into device behavior due to the effects of traps and grain-boundaries. Also short-channel effects and drain induced barrier lowering effects are incorporated in the model. The potential distribution and electric field variation with various device parameters is shown. An analysis of threshold voltage is also presented. The results obtained show good agreement with simulated results and numerical modeling based on the finite difference method, thus demonstrating the validity of our model.