• 제목/요약/키워드: DI model

검색결과 402건 처리시간 0.027초

스테레오 카메라를 이용한 안면부 측정의 재현성과 정확도에 대한 마네킨을 이용한 연구: 직접 인체계측, Digitizer, Stereophotogrammetry의 비교 연구 (Manikin Model Study on Reproducibility and Accuracy of Maxillofacial Measurements Determined by Stereocamera: Comparative Study of Direct Anthropometry, Digitizer and Stereophotogrammetery)

  • 정연욱;양지웅;정광;국민석;오희균
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제34권1호
    • /
    • pp.17-25
    • /
    • 2012
  • Purpose: Recently, a three dimensional approach to hard and soft tissues of the maxillofacial area has been widely used. This study was to evaluate the reproducibility and accuracy of a stereocamera compared to actual measurement methods using a digital caliper and digitizer. Methods: The stereoscopies of 7 head dummies with different sizes and shapes were obtained using a Di3D system (Dimensional Imaging, Glasgow, UK) after marking reference points on facial areas. From the obtained stereoscopy, 10 measurements representing the width, height and depth of each of the facial sections of the dummy were measured twice using a three dimensional reverse engineering software program (RapidForm$^{TM}$ 2006, Inus, Seoul, Korea). The x, y, and z coordinates of each of the three dimensional measurements were obtained and distances between two points were calculated. All procedures were repeated twice. The actual measurement method was performed twice, directly on dummies, using a digital caliper and values were compared with the previously determined values. Results: The results were as follows. In the ANOVA analysis, there were no significant statistical differences among the three measurement methods. In the Bonferroni analysis, with adjustments applied for multiple comparisons, there was no difference between actual measurement methods using a digitizer and a digital caliper. However, there was some difference between using a stereocamera and actual measurement methods using a digitizer and a digital caliper in values of $Ex_{Rt}-Ex_{Lt}$, $En_{Rt}-En_{Lt}$, $Ala_{Rt}-Ala_{Lt}$, $Ch_{Rt}-Ch_{Lt}$, G-Pg', $Ala_{Rt}$-Prn, $Ala_{Rt}$-Prn. The mean value for technical error in measurement (TEM) in Di3D (0.98 mm) was slightly higher than for a digital caliper (0.17 mm) and a digitizer (0.30 mm). In an intraclass correlation coefficient (ICC) there were no significant differences among the three measurement methods, but the Di3D system with the stereocamera showed relatively lower reproducibility compared to actual measurement methods using a digitizer and a digital caliper. Conclusion: These results indicate that some complementary measures may be needed to improve accuracy and reproducibility in the Di3D system with stereocamera.

Gymnaster koraiensis and its major components, 3,5-di-O-caffeoylquinic acid and gymnasterkoreayne B, reduce oxidative damage induced by tert-butyl hydroperoxide or acetaminophen in HepG2 cells

  • Jho, Eun Hye;Kang, Kyungsu;Oidovsambuu, Sarangerel;Lee, Eun Ha;Jung, Sang Hoon;Shin, Il-Shik;Nho, Chu Won
    • BMB Reports
    • /
    • 제46권10호
    • /
    • pp.513-518
    • /
    • 2013
  • We investigated the protective effects of Gymnaster koraiensis against oxidative stress-induced hepatic cell damage. We used two different cytotoxicity models, i.e., the administration of tert-butyl hydroperoxide (t-BHP) and acetaminophen, in HepG2 cells to evaluate the protective effects of G. koraiensis. The ethyl acetate (EA) fraction of G. koraiensis and its major compound, 3,5-di-O-caffeoylquinic acid (DCQA), exerted protective effects in the t-BHP-induced liver cytotoxicity model. The EA fraction and DCQA ameliorated t-BHP-induced reductions in GSH levels and exhibited free radical scavenging activity. The EA fraction and DCQA also significantly reduced t-BHP-induced DNA damage in HepG2 cells. Furthermore, the hexane fraction of G. koraiensis and its major compound, gymnasterkoreayne B (GKB), exerted strong hepatoprotection in the acetaminophen-induced cytotoxicity model. CYP 3A4 enzyme activity was strongly inhibited by the extract, hexane fraction, and GKB. The hexane fraction and GKB ameliorated acetaminophen-induced reductions in GSH levels and protected against cell death.

Control of the along-wind response of steel framed buildings by using viscoelastic or friction dampers

  • Mazza, Fabio;Vulcano, Alfonso
    • Wind and Structures
    • /
    • 제10권3호
    • /
    • pp.233-247
    • /
    • 2007
  • The insertion of steel braces has become a common technique to limit the deformability of steel framed buildings subjected to wind loads. However, when this technique is inadequate to keep floor accelerations within acceptable levels of human comfort, dampers placed in series with the steel braces can be adopted. To check the effectiveness of braces equipped with viscoelastic (VEDs) or friction dampers (FRDs), a numerical investigation is carried out focusing attention on a three-bay fifteen-storey steel framed building with K-braces. More precisely, three alternative structural solutions are examined for the purpose of controlling wind-induced vibrations: the insertion of additional diagonal braces; the insertion of additional diagonal braces equipped with dampers; the insertion of both additional diagonal braces and dampers supported by the existing K-braces. Additional braces and dampers are designed according to a simplified procedure based on a proportional stiffness criterion. A dynamic analysis is carried out in the time domain using a step-by-step initial-stress-like iterative procedure. Along-wind loads are considered at each storey assuming the time histories of the wind velocity, for a return period $T_r=5$ years, according to an equivalent wind spectrum technique. The behaviour of the structural members, except dampers, is assumed linear elastic. A VED and an FRD are idealized by a six-element generalized model and a bilinear (rigid-plastic) model, respectively. The results show that the structure with damped additional braces can be considered, among those examined, the most effective to control vibrations due to wind, particularly the floor accelerations. Moreover, once the stiffness of the additional braces is selected, the VEDs are slightly more efficient than the FRDs, because they, unlike the FRDs, dissipate energy also for small amplitude vibrations.

Effect of the volumetric dimensions of a complete arch on the accuracy of scanners

  • Kim, Min-Kyu;Son, KeunBaDa;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권6호
    • /
    • pp.361-368
    • /
    • 2020
  • PURPOSE. The present study aimed to evaluate the accuracy of a desktop scanner and intraoral scanners based on the volumetric dimensions of a complete arch. MATERIALS AND METHODS. Seven reference models were fabricated based on the volumetric dimensions of complete arch (70%, 80%, 90%, 100%, 110%, 120%, and 130%). The reference models were digitized using an industrial scanner (Solutionix C500; MEDIT) for the fabrication of a computer-aided design (CAD) reference model (CRM). The reference models were digitized using three intraoral scanners (CS3600, Trios3, and i500) and one desktop scanner (E1) to fabricate a CAD test model (CTM). CRM and CTM were then superimposed using inspection software, and 3D analysis was conducted. For statistical analysis, one-way analysis of variance was used to verify the difference in accuracy based on the volumetric dimensions of the complete arch and the accuracy based on the scanners, and the differences among the groups were analyzed using the Tukey HSD test as a post-hoc test (α=.05). RESULTS. The three different scanners showed a significant difference in accuracy based on the volumetric dimensions of the complete arch (P<.05), but the desktop scanner did not show a significant difference in accuracy based on the volumetric dimensions of the complete arch (P=.808). CONCLUSION. The accuracy of the intraoral scanners was dependent on the volumetric dimensions of the complete arch, but the volumetric dimensions of the complete arch had no effect on the accuracy of the desktop scanner. Additionally, depending on the type of intraoral scanners, the accuracy differed according to the volumetric dimensions of the complete arch.

Improve the Performance of Semi-Supervised Side-channel Analysis Using HWFilter Method

  • Hong Zhang;Lang Li;Di Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.738-754
    • /
    • 2024
  • Side-channel analysis (SCA) is a cryptanalytic technique that exploits physical leakages, such as power consumption or electromagnetic emanations, from cryptographic devices to extract secret keys used in cryptographic algorithms. Recent studies have shown that training SCA models with semi-supervised learning can effectively overcome the problem of few labeled power traces. However, the process of training SCA models using semi-supervised learning generates many pseudo-labels. The performance of the SCA model can be reduced by some of these pseudo-labels. To solve this issue, we propose the HWFilter method to improve semi-supervised SCA. This method uses a Hamming Weight Pseudo-label Filter (HWPF) to filter the pseudo-labels generated by the semi-supervised SCA model, which enhances the model's performance. Furthermore, we introduce a normal distribution method for constructing the HWPF. In the normal distribution method, the Hamming weights (HWs) of power traces can be obtained from the normal distribution of power points. These HWs are filtered and combined into a HWPF. The HWFilter was tested using the ASCADv1 database and the AES_HD dataset. The experimental results demonstrate that the HWFilter method can significantly enhance the performance of semi-supervised SCA models. In the ASCADv1 database, the model with HWFilter requires only 33 power traces to recover the key. In the AES_HD dataset, the model with HWFilter outperforms the current best semi-supervised SCA model by 12%.

용량방전점화장치의 설계 (Design of the Capacitor Discharge Ignition System)

  • 박송배;김영길
    • 대한전자공학회논문지
    • /
    • 제13권2호
    • /
    • pp.5-13
    • /
    • 1976
  • 개소린 엔진 자동차의 연료절차, 공해감소, 보수경감을 목적으로 용량방전점화장치(CDI)를 해석적 및 실험적으로 설계하는 과정을 기술하였다. 특히 방전시스템에 대한 간단한 모델을 사용함으로써 점화코일의 입출력전압, 전류를 계산하였다. 그 결과 실험치와 비교하였으며 이로 부터 최적점화조건을 만족하기 위한 방전용량, SCR 및 다이오드의 정격과 DC-DC 콘버터의 소요출력전압을 결정하였다. 또 과도한 dv/dt 및 di/dt에 대한 SCR의 보호회로를 해석하고 그 결과를 관측된 결과를 관측된 결과와 비교하였는데 이로써 SCR선택과 보호회로 및 트리거 회로 설계가 용이하게 된다. 더우기 DC-DC콘버터의 거동에 대한 실험적 결과를 해석하므로써 콘버터 설계를 간이화하였다. 실용적인 CDI장치를 시작하였으며 이것은 실험실 및 노상 시험에서 만족할만한 성능을 나타냈다. 그 시험결과도 아울러 보고한다. An analytical and experimental design procedure is described for the Capacitor Discharge Ignition (CDI) System with a view to fuel saving ann reduction of gas exhaustion and maintenance need. Specifically, the input and output voltage and current of a given ignition coil were calculated by using a simplified circuit model for the discharging system. The results were compared with the experimental results, from which ratings of the charging capacitor, the SCR and the diodes and the required output valtage of the DC·DC converter were determined so as to satisfy the optimum ignition conditions. Protection circuits for excessive dv/dt and di/dt for the SCR were also analyzed and the results were compared with the observed results, which facilitate selection of the SCR and design of the protection circuit and the trigger circuit. Also, design of the DC·DC converter was simplified based on the analysis and experimental results of the behavior of the converter, An experimental, yet practical CDI system was built, which showed satisfactory performance in the laboratory and field tests. The results were also reported.

  • PDF

GALS 시스템에서의 저비용 데이터 전송을 위한 QDI모델 기반 인코더/디코더 회로 설계 (Design of QDI Model Based Encoder/Decoder Circuits for Low Delay-Power Product Data Transfers in GALS Systems)

  • 오명훈
    • 대한전자공학회논문지SD
    • /
    • 제43권1호
    • /
    • pp.27-36
    • /
    • 2006
  • 기존의 지연 무관 (Delay-Insensitive(DI)) 데이터 인코딩 방식은 N 비트 데이터 전송에 물리적으로 2N+1 개의 도선이 필요하다. GALS(Globally Asynchronous Locally Synchronous) 시스템과 같은 대규모 칩 설계 시에 많은 도선 수로 인해 발생할 수 있는 전력 소모와 설계 복잡성을 줄이기 위해, 의사지연 무관 (Quasi D디ay-Insensitive(QDI)) 모델에 기반하고, N+1 개의 도선으로 N 비트 데이터를 전송할 수 있는 인코더와 디코더 회로를 설계한다. 이 회로들은 전류모드 다치 논리 회로(Current-Mode Multiple Valued Logic(CMMVL))를 사용하여 설계되었으며, 도선수를 줄임으로써 파생되는 효율성을 검증하기 위해 0.25 um CMOS 공정에서 기존의 DI 인코딩 방식인 dual-rail 방식 및 1-of-4 방식과 delay-power product ($D{\ast}P$) 값 측면에서 비교하였다. HSPICE를 통한 모의실험 결과 4 mm 이상의 도선의 길이에서, dual-rail 방식과는 5 MHz의 data rate 이상에서, 1-of-4 방식과는 18 MHz의 data rate 이상에서 제안된 CMML 방식이 유리하였다. 또한, 긴 도선에 버퍼를 장착한 dual-rail 방식, 1-of-4방식과의 비교에서도 개선된 CMMVL 방식이 10 mm 도선, 32 비트 데이터 전송에서 각각 4 MHz, 25 MHz data rate 이상에서 최대 $57.7\%$$17.9\%$$D{\ast}P$ 값 감소 효과를 나타냈다.

Effect of Lidocaine-HCl on Microviscosity of Phosphatidylcholine Model Membrane

  • Chung, In-Kyo;Kim, Inn-Se;Choi, Chang-Hwa;Cho, Goon-Jae;Kim, Jin-Bom;Son, Woo-Sung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.243-251
    • /
    • 2000
  • In order to provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics and to develop a fluorescence spectroscopic method which can detect the microviscosity of native and model membranes using intramolecular excimerization of 1,3-di(l-pyrenyl)propane (Py-3-Py), we examined the effect of lidocaine HCl on the microviscosity of model membranes of phosphatidylcholine fraction extracted from synaptosomal plasma membrane vesicles (SPMVPC). The excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in liquid paraffin was a simple linear function of $T/{\eta}.$ Based on this calibration curve, the microviscosity values of the direct probe environment in SPMVPC model membranes ranged from $234.97{\pm}48.85$ cP at $4^{\circ}C$ to %19.21{\pm}1.11$ cP at $45^{\circ}C.$ At $37^{\circ}C,$ a value of $27.25{\pm}0.44$ cP was obtained. The lidocaine HCl decreased the microviscosity of SPMVPC model membranes in a concentration-dependent manner, with a significant decrease in microviscosity value by injecting the local anesthetic even at the concentration of 0.5 mM. These results indicate that the direct environment of Py-3-Py in the SPMVPC model membranes is significantly fluidized by the lidocaine HCl. Also, the present study explicitly shows that an interaction between local anesthetics and membrane lipids is of importance in the molecular mechanism of pharmacological action of lidocaine HCl.

  • PDF

온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구 (Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis)

  • 정동원;권오석;백영순;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model

  • Ferrotto, Marco F.;Cavaleri, Liborio;Trapani, Fabio Di
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.143-152
    • /
    • 2018
  • This paper deepens the finite element modeling (FEM) method to reproduce the compressive behavior of partially steel-jacketed (PSJ) RC columns by means of the Concrete Damaged Plasticity (CDP) Model available in ABAQUS software. Although the efficiency of the CDP model is widely proven for reinforced concrete columns at low confining pressure, when the confinement level becomes high the standard plasticity parameters may not be suitable to obtain reliable results. This paper deals with these limitations and presents an analytically based strategy to fix the parameters of the Concrete Damaged Plasticity (CDP) model. Focusing on a realistic prediction of load-bearing capacity of PSJ RC columns subjected to monotonic compressive loads, a new strain hardening/softening function is developed for confined concrete coupled with the evaluation of the dilation angle including effects of confinement. Moreover, a simplified efficient modeling approach is proposed to take into account also the response of the steel angle in compression. The prediction accuracy from the current model is compared with that of existing experimental data obtained from a wide range of mechanical confinement ratio.