• 제목/요약/키워드: DFT calculation

검색결과 126건 처리시간 0.023초

신규 Phthaloperinone 색소의 합성과 특성에 대한 연구 (Synthesis and Properties of New Phthaloperinone Dyes)

  • 전근;권선영;김성훈
    • 한국염색가공학회지
    • /
    • 제27권4호
    • /
    • pp.275-280
    • /
    • 2015
  • New series of phthaloperinone dyes were synthesized by the condensation reaction between tetrachloro-phthalic anhydride, 2,3-naphthalene dicarboxylic anhydride and o-phenylenediamine, 1,8-diaminonaphthalene, 1,2-diaminoanthraquinone. These dyes absorb at around 370-490nm. It was found that introduction of naphthalene and anthraquinone moiety on the perinone system produces a large bathochromic shift of 100nm. The synthesized dye 7 containing anthraquinone moiety in perinone chromophoric system exhibited superior heat stability and bright color as yellow chromophore. New dye 7 have been investigated in terms of interacting with volatile organic compound(VOC) $EtNH_2$. The sensing behaviour of the dye 7 toward $EtNH_2$ was studied by UV-vis absorption spectroscopy. Sensing mechanism of dye 7 to $EtNH_2$ was supported by theoretical calculations based on DFT method.

BLYP and mPW1PW91 Calculated Structures and IR Spectra of the Stereoisomers of Tetra-O-methylsulfinylcalix[4]arene

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3247-3251
    • /
    • 2010
  • Molecular structures of the various conformers for the four stereoisomers of tetra-t-butyl-tetra-O-methylsulfinylcalix[4]arene (1) were optimized using DFT BLYP and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the total electronic and Gibbs free energies and normal vibrational frequencies of 16 different structures from four major conformations (cone (CONE), partial cone (PC), 1,2-alternate (1,2-A), 1,3-alternate (1,3-A)) of the four stereoisomers [1(rccc), 1(rcct), 1(rctt), 1(rtct)]. The mPW1PW91/6-31G(d,p) calculations suggested that the $1(rccc)_{CONE}$, $1(rcct)_{PC}$, $1(rctt)_{PC}$, and $1(rtct)_{1,3-A}$ were the most stable conformations of the respective stereoisomers. These outcomes are in accordance with the experimental structures obtained from X-ray crystallography. The electrostatic repulsion between the sulfinyl and methoxy groups is a primary factor for the relative stabilities of the four different conformations. The IR spectra of the most stable conformers [$1(rccc)_{CONE}$, $1(rcct)_{PC}$, $1(rctt)_{PC}$, $1(rtct)_{1,3-A}$] of each stereoisomer were compared to each other.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

mPW1PW91 Conformational Study of Di-t-butyl-dinitro-tetramethoxysulfonylcalix[4]arene

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.100-104
    • /
    • 2011
  • The structures of the conformers for 1,3-di-t-butyl-2,4-dinitro-tetramethoxysulfonylcalix[4]arene (1) and 1,2-di-t-butyl-3,4-dinitro-tetramethoxysulfonylcalix[4]arene (2) were optimized using DFT BLYP and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the total electronic and Gibbs free energies and the differences between the various conformations (cone, partial-cone (PC), 1,2-alternate, and 1,3-alternate) of 1 and 2. For both compounds, the 1,3-alternate (1,3-A) conformers were calculated to be the most stable, which correlate very well with the experimental results. The orderings of the relative stability of 1 and 2 that resulted from the mPW1PW91/6-31G(d,p) calculations are the following: 1: 1,3-A (syn) > PC (syn) > PC (anti) > 1,2-A (anti) > CONE (syn); 2: 1,3-A (anti) > PC (anti) > PC (syn) > 1,2-A (anti) > 1,2-A (syn) > CONE (syn). The BLYP/6-31G(d) calculated IR spectra of the most stable 1,3-A conformers of 1 and 2 are compared.

A Two-dimensional Supramolecular Network Built through Unique π-πStacking: Synthesis and Characterization of [Cu(phen)2(μ-ID A)Cu(phen)·(NO3)](NO3)·4(H2O)

  • Lin, Jian-Guo;Qiu, Ling Qiu;Xu, Yan-Yan
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1021-1025
    • /
    • 2009
  • A novel supramolecular network containing binuclear copper unit $[Cu(phen)_{2}({\mu}-ID\;A)Cu(phen){\cdot}(NO_{3})](NO_{3}){\cdot}4(H_{2}O)$ (1) was synthesized through the self-assembly of iminodiacetic acid ($H_2IDA$) and 1,10-phenanthroline (phen) in the condition of pH = 6. It has been characterized by the infrared (IR) spectroscopy, elemental analysis, single crystal X-ray diffraction, and thermogravimetric analysis (TGA). 1 shows a 2-D supramolecular structure assembled through strong and unique $\pi-\pi$ packing interactions. Density functional theory (DFT) calculations show that theoretical optimized structures can well reproduce the experimental structure. The TGA and powder X-ray diffraction (PXRD) curves indicate that the complex 1 can maintain the structural integrity even at the loss of free water molecules. The magnetic property is also reported in this paper.

밀도범함수를 이용한 정방정계-NiSi (010)/Si 계면 층의 구조 연구 (Structural Study of Interface Layers in Tetragonal-NiSi (010)/Si using Density Functional Theory)

  • 김대희;김대현;서화일;김영철
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.377-381
    • /
    • 2009
  • Tetragonal-NiSi (010)/Si superstructures were calculated for studying the interface structure using density functional theory, The orthorhombic-NiSi was changed to the tetragonal-NiSi to be matched with the Si surface for epitaxy interface. The eight interface models were produced by the type of the Si surfaces, The tetragonal-NiSi (010)/Si (020)[00-1] superstructure was energetically the most favorable, and the interface thickness of this superstructure was the shortest among the tetragonal-NiSi (010)/Si superstructures. However, in the case of tetragonal-NiSi (010)/Si (010)[00-1] superstructure, it was energetically the most unfavorable, and the interface thickness was the longest. The energies and interface thicknesses of tetragonal-NiSi (010)/Si superstructures were influenced by the coordination number of Ni atoms and the bond length between atoms located at the interface.

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Experimental and ab initio Computational Studies on Dimethyl-(4-{4-{3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenyl)-amine

  • Yuksektepe, Cigdem;Saracoglu, Hanife;Caliskan, Nezihe;Yilmaz, Ibrahim;Cukurovali, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3553-3560
    • /
    • 2010
  • A new hydrazone derivative compound has been synthesized and characterized by IR, $^1H$-NMR, $^{13}C$-NMR and UV-vis. spectroscopy techniques, elemental analysis and single-crystal X-ray diffraction (XRD). The new compound crystallizes in monoclinic space group C2/c. In addition to the crystal structure from X-ray experiment, the molecular geometry, vibrational frequencies and frontier molecular orbitals analysis of the title compound in the ground state have been calculated by using the HF/6-31G(d, p), B3LYP/6-311G(d, p) and B3LYP/6-31G(d, p) methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine conformational flexibility, molecular energy profile of (1) was obtained by semi-empirical (AM1) calculation with respect to a selected degree of torsional freedom, which was varied from $-180^{\circ}$ to $+180^{\circ}$ in steps of $10^{\circ}$. Molecular electrostatic potential of the compound was also performed by the theoretical method.

The structures and catalytic activities of metallic nanoparticles on mixed oxide

  • 박준범
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2010
  • The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction ($H_2O\;+\;CO\;{\leftrightarrow}\;H_2\;+\;CO_2$) and the CO oxidation ($O_2\;+\;2CO\;{\leftrightarrow}\;2CO_2$). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria ($Ce^{3+}$ and $Ce^{4+}$) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of $CeO_x$ and Au/$CeO_x$ on rutile $TiO_2$(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the $CeO_x/TiO_2$(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a $Ce^{3+}$ oxidation state and enhancing their chemical activity. The deposition of metal on a $CeO_x/TiO_2$(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.

  • PDF

제일원리 계산을 활용한 전기화학 촉매 연구 (First-Principles Calculations for Design of Efficient Electrocatalysts)

  • 김동연
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.393-400
    • /
    • 2021
  • As the recent climate problems are getting worse year after year, the demands for clean energy materials have highly increased in modern society. However, the candidate material classes for clean energy expand rapidly and the outcomes are too complex to be interpreted at laboratory scale (e.g., multicomponent materials). In order to overcome these issues, the first-principles calculations are becoming attractive in the field of material science. The calculations can be performed rapidly using virtual environments without physical limitations in a vast candidate pool, and theory can address the origin of activity through the calculations of electronic structure of materials, even if the structure of material is too complex. Therefore, in terms of the latest trends, we report academic progress related to the first-principles calculations for design of efficient electrocatalysts. The basic background for theory and specific research examples are reported together with the perspective on the design of novel materials using first-principles calculations.