DOI QR코드

DOI QR Code

First-Principles Calculations for Design of Efficient Electrocatalysts

제일원리 계산을 활용한 전기화학 촉매 연구

  • Kim, Dong Yeon (Computational Energy Materials Science Lab, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 김동연 (울산과학기술원 에너지공학과 에너지 전산재료과학 연구실)
  • Received : 2021.09.17
  • Accepted : 2021.09.24
  • Published : 2021.11.01

Abstract

As the recent climate problems are getting worse year after year, the demands for clean energy materials have highly increased in modern society. However, the candidate material classes for clean energy expand rapidly and the outcomes are too complex to be interpreted at laboratory scale (e.g., multicomponent materials). In order to overcome these issues, the first-principles calculations are becoming attractive in the field of material science. The calculations can be performed rapidly using virtual environments without physical limitations in a vast candidate pool, and theory can address the origin of activity through the calculations of electronic structure of materials, even if the structure of material is too complex. Therefore, in terms of the latest trends, we report academic progress related to the first-principles calculations for design of efficient electrocatalysts. The basic background for theory and specific research examples are reported together with the perspective on the design of novel materials using first-principles calculations.

Keywords

Acknowledgement

이 논문은 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(2021R1I1A1A01048578과 2018H1A2A1062086).

References

  1. M. Shao, Q. Chang, J. P. Dodelet, and R. Chenitz, Chem. Rev., 116, 3594 (2016). [DOI: https://doi.org/10.1021/acs.chemrev.5b00462]
  2. J. M. Lee, H. Han, S. Jin, S. M. Choi, H. J. Kim, M. H. Seo, and W. B. Kim, Energy Technol., 7, 1900312 (2019). [DOI: https://doi.org/10.1002/ente.201900312]
  3. J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Norskov, Nat. Mater., 16, 70 (2016). [DOI: https://doi.org/10.1038/nmat4778]
  4. S. Nayak, S. Bhattacharjee, J. H. Choi, and S. C. Lee, J. Phys. Chem. A, 124, 247 (2020). [DOI: https://doi.org/10.1021/acs.jpca.9b07569]
  5. S. Grimme and P. R. Schreiner, Angew. Chem. Int. Ed., 57, 4170 (2018). [DOI: https://doi.org/10.1002/anie.201709943]
  6. K. D. Vogiatzis, M. V. Polynski, J. K. Kirkland, J. Townsend, A. Hashemi, C. Liu, and E. A. Pidko, Chem. Rev., 119, 2453 (2019). [DOI: https://doi.org/10.1021/acs.chemrev.8b00361]
  7. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, Science, 355 (2017). [DOI: https://doi.org/10.1126/science.aad4998]
  8. C. Wei, R. R. Rao, J. Peng, B. Huang, I.E.L. Stephens, M. Risch, Z. J. Xu, and Y. Shao-Horn, Adv. Mater., 31, 1806296 (2019). [DOI: https://doi.org/10.1002/adma.201806296]
  9. J. Liu, J. Ma, Z. Zhang, Y. Qin, Y. J. Wang, Y. Wang, R. Tan, X. Duan, T. Z. Tian, C. H. Zhang, W. W. Xie, N. W. Li, L. Yu, C. Yang, Y. Zhao, H. Zia, F. Nosheen, G. Zheng, S. Gupta, X. Wu, Z. Wang, J. Qiu, G. Zhou, L. Xu, K. Liu, J. Fu, M. Liu, S. I. Choi, J. Xie, X. Peng, T. Li, G. Lin, J. Wang, J. Han, H. Liang, S. Li, X. Zhang, Y. Zhu, T. He, X. Cui, H. Wang, Z. Wei, Q. Liu, G. Fan, Q. Liu, X. Sun, Y. Feng, Y. Liu, K. Chu, Y. Qiu, and X. Liu, J. Phys.: Mater., 4, 022004 (2021). [DOI: https://doi.org/10.1088/2515-7639/abd596]
  10. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B, 108, 17886 (2004). [DOI: https://doi.org/10.1021/jp047349j]
  11. M. Ha, D. Y. Kim, M. Umer, V. Gladkikh, C. W. Myung, and K. S. Kim, Energy Environ. Sci., 14, 3455 (2021). [DOI: https://doi.org/10.1039/d1ee00154j]
  12. R. A. van Santen, M. Neurock, and S. G. Shetty, Chem. Rev., 110, 2005 (2010). [DOI: https://doi.org/10.1021/cr9001808]
  13. H. Ooka, J. Huang, and K. S. Exner, Front. Energy Res., 9 (2021). [DOI: https://doi.org/10.3389/fenrg.2021.654460]
  14. A. Kulkarni, S. Siahrostami, A. Patel, and J. K. Norskov, Chem. Rev., 118, 2302 (2018). [DOI: https://doi.org/10.1021/acs.chemrev.7b00488]
  15. Y. Wang, W. Qiu, E. Song, F. Gu, Z. Zheng, X. Zhao, Y. Zhao, J. Liu, and W. Zhang, Natl. Sci. Rev., 5, 327 (2018). [DOI: https://doi.org/10.1093/nsr/nwx119]
  16. X . Liu, Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, J. Am. Chem. Soc., 141, 9664 (2019). [DOI: https://doi.org/10.1021/jacs.9b03811]
  17. B. Hammer and J. K. Norskov, Nature, 376, 238 (1995). [DOI: https://doi.org/10.1038/376238a0]
  18. J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Proc. Natl. Acad. Sci. U. S. A., 108, 937 (2011). [DOI: https://doi.org/10.1073/pnas.1006652108]
  19. J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Norskov, Nat. Mater., 5, 909 (2006). [DOI: https://doi.org/10.1038/nmat1752]
  20. S. Sinthika, U. V. Waghmare, and R. Thapa, Small, 14, 1703609 (2018). [DOI: https://doi.org/10.1002/smll.201703609]
  21. D. Krishnamurthy, V. Sumaria, and V. Viswanathan, J. Phys. Chem. Lett., 9, 588 (2018). [DOI: https://doi.org/10.1021/acs.jpclett.7b02895]
  22. D. Y. Kim, M. Ha, and K. S. Kim, J. Mater. Chem. A, 9, 3511 (2021). [DOI: https://doi.org/10.1039/d0ta02425b]
  23. J. N. Tiwari, S. Sultan, C. W. Myung, T. Yoon, N. Li, M. Ha, A. M. Harzandi, H. J. Park, D. Y. Kim, S. S. Chandrasekaran, W. G. Lee, V. Vij, H. Kang, T. J. Shin, H. S. Shin, G. Lee, Z. Lee, and K. S. Kim, Nat. Energy, 3, 773 (2018). [DOI: https://doi.org/10.1038/s41560-018-0209-x]
  24. S. Sultan, M. Ha, D. Y. Kim, J. N. Tiwari, C. W. Myung, A. Meena, T. J. Shin, K. H. Chae, and K. S. Kim, Nat. Commun., 10, 5195 (2019). [DOI: https://doi.org/10.1038/s41467-019-13050-3]