S-001

The structures and catalytic activities of metallic nanoparticles on mixed oxide

<u> 박준범</u>

전북대학교 화학교육학과

The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction (H₂O + CO \leftrightarrow H₂ + CO₂) and the CO oxidation (O₂ + 2CO \leftrightarrow 2CO₂). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria (Ce³⁺ and Ce⁴⁺) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of CeO_x and Au/CeO_x on rutile TiO₂(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the CeO_x/TiO₂(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a Ce³⁺ oxidation state and enhancing their chemical activity. The deposition of metal on a CeO_x/TiO₂(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.