Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.6.1

First-Principles Calculations for Design of Efficient Electrocatalysts  

Kim, Dong Yeon (Computational Energy Materials Science Lab, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.6, 2021 , pp. 393-400 More about this Journal
Abstract
As the recent climate problems are getting worse year after year, the demands for clean energy materials have highly increased in modern society. However, the candidate material classes for clean energy expand rapidly and the outcomes are too complex to be interpreted at laboratory scale (e.g., multicomponent materials). In order to overcome these issues, the first-principles calculations are becoming attractive in the field of material science. The calculations can be performed rapidly using virtual environments without physical limitations in a vast candidate pool, and theory can address the origin of activity through the calculations of electronic structure of materials, even if the structure of material is too complex. Therefore, in terms of the latest trends, we report academic progress related to the first-principles calculations for design of efficient electrocatalysts. The basic background for theory and specific research examples are reported together with the perspective on the design of novel materials using first-principles calculations.
Keywords
Electrocatalysts; Energy materials; DFT; First-principles calculation; Water splitting; Fuel cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Liu, J. Ma, Z. Zhang, Y. Qin, Y. J. Wang, Y. Wang, R. Tan, X. Duan, T. Z. Tian, C. H. Zhang, W. W. Xie, N. W. Li, L. Yu, C. Yang, Y. Zhao, H. Zia, F. Nosheen, G. Zheng, S. Gupta, X. Wu, Z. Wang, J. Qiu, G. Zhou, L. Xu, K. Liu, J. Fu, M. Liu, S. I. Choi, J. Xie, X. Peng, T. Li, G. Lin, J. Wang, J. Han, H. Liang, S. Li, X. Zhang, Y. Zhu, T. He, X. Cui, H. Wang, Z. Wei, Q. Liu, G. Fan, Q. Liu, X. Sun, Y. Feng, Y. Liu, K. Chu, Y. Qiu, and X. Liu, J. Phys.: Mater., 4, 022004 (2021). [DOI: https://doi.org/10.1088/2515-7639/abd596]   DOI
2 J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B, 108, 17886 (2004). [DOI: https://doi.org/10.1021/jp047349j]   DOI
3 S. Grimme and P. R. Schreiner, Angew. Chem. Int. Ed., 57, 4170 (2018). [DOI: https://doi.org/10.1002/anie.201709943]   DOI
4 K. D. Vogiatzis, M. V. Polynski, J. K. Kirkland, J. Townsend, A. Hashemi, C. Liu, and E. A. Pidko, Chem. Rev., 119, 2453 (2019). [DOI: https://doi.org/10.1021/acs.chemrev.8b00361]   DOI
5 Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, Science, 355 (2017). [DOI: https://doi.org/10.1126/science.aad4998]   DOI
6 C. Wei, R. R. Rao, J. Peng, B. Huang, I.E.L. Stephens, M. Risch, Z. J. Xu, and Y. Shao-Horn, Adv. Mater., 31, 1806296 (2019). [DOI: https://doi.org/10.1002/adma.201806296]   DOI
7 M. Shao, Q. Chang, J. P. Dodelet, and R. Chenitz, Chem. Rev., 116, 3594 (2016). [DOI: https://doi.org/10.1021/acs.chemrev.5b00462]   DOI
8 S. Nayak, S. Bhattacharjee, J. H. Choi, and S. C. Lee, J. Phys. Chem. A, 124, 247 (2020). [DOI: https://doi.org/10.1021/acs.jpca.9b07569]   DOI
9 J. M. Lee, H. Han, S. Jin, S. M. Choi, H. J. Kim, M. H. Seo, and W. B. Kim, Energy Technol., 7, 1900312 (2019). [DOI: https://doi.org/10.1002/ente.201900312]   DOI
10 J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Norskov, Nat. Mater., 16, 70 (2016). [DOI: https://doi.org/10.1038/nmat4778]   DOI
11 M. Ha, D. Y. Kim, M. Umer, V. Gladkikh, C. W. Myung, and K. S. Kim, Energy Environ. Sci., 14, 3455 (2021). [DOI: https://doi.org/10.1039/d1ee00154j]   DOI
12 R. A. van Santen, M. Neurock, and S. G. Shetty, Chem. Rev., 110, 2005 (2010). [DOI: https://doi.org/10.1021/cr9001808]   DOI
13 H. Ooka, J. Huang, and K. S. Exner, Front. Energy Res., 9 (2021). [DOI: https://doi.org/10.3389/fenrg.2021.654460]   DOI
14 A. Kulkarni, S. Siahrostami, A. Patel, and J. K. Norskov, Chem. Rev., 118, 2302 (2018). [DOI: https://doi.org/10.1021/acs.chemrev.7b00488]   DOI
15 X . Liu, Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, J. Am. Chem. Soc., 141, 9664 (2019). [DOI: https://doi.org/10.1021/jacs.9b03811]   DOI
16 B. Hammer and J. K. Norskov, Nature, 376, 238 (1995). [DOI: https://doi.org/10.1038/376238a0]   DOI
17 J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Proc. Natl. Acad. Sci. U. S. A., 108, 937 (2011). [DOI: https://doi.org/10.1073/pnas.1006652108]   DOI
18 J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Norskov, Nat. Mater., 5, 909 (2006). [DOI: https://doi.org/10.1038/nmat1752]   DOI
19 D. Y. Kim, M. Ha, and K. S. Kim, J. Mater. Chem. A, 9, 3511 (2021). [DOI: https://doi.org/10.1039/d0ta02425b]   DOI
20 D. Krishnamurthy, V. Sumaria, and V. Viswanathan, J. Phys. Chem. Lett., 9, 588 (2018). [DOI: https://doi.org/10.1021/acs.jpclett.7b02895]   DOI
21 J. N. Tiwari, S. Sultan, C. W. Myung, T. Yoon, N. Li, M. Ha, A. M. Harzandi, H. J. Park, D. Y. Kim, S. S. Chandrasekaran, W. G. Lee, V. Vij, H. Kang, T. J. Shin, H. S. Shin, G. Lee, Z. Lee, and K. S. Kim, Nat. Energy, 3, 773 (2018). [DOI: https://doi.org/10.1038/s41560-018-0209-x]   DOI
22 Y. Wang, W. Qiu, E. Song, F. Gu, Z. Zheng, X. Zhao, Y. Zhao, J. Liu, and W. Zhang, Natl. Sci. Rev., 5, 327 (2018). [DOI: https://doi.org/10.1093/nsr/nwx119]   DOI
23 S. Sinthika, U. V. Waghmare, and R. Thapa, Small, 14, 1703609 (2018). [DOI: https://doi.org/10.1002/smll.201703609]   DOI
24 S. Sultan, M. Ha, D. Y. Kim, J. N. Tiwari, C. W. Myung, A. Meena, T. J. Shin, K. H. Chae, and K. S. Kim, Nat. Commun., 10, 5195 (2019). [DOI: https://doi.org/10.1038/s41467-019-13050-3]   DOI