• Title/Summary/Keyword: DFIG Wind Power System

Search Result 80, Processing Time 0.025 seconds

Investigation and Simulation Study on the Cascading Trip-off Fault of a Large Number of Wind Turbines in China on May 14, 2012

  • Qiao, Ying;Lu, Zong-Xiang;Lu, Ji;Ruan, Jia-Yang;Wu, Lin-lin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2240-2248
    • /
    • 2015
  • The integration of the large-scale wind power brings great challenge to the stability of the power grid. This paper investigates and studies the fault on May 14, 2012 of the large-scale cascading trip-off of wind turbines in North China. According to the characteristics of the voltage variation, the fault process is divided into three stages: the pre-event stage, the critical stage before cascading, and the cascading stage. The scenes in the fault are reproduced, using the full-size actual power system model. Simulation models of double-fed induction generators (DFIGs) and SVCs including protection settings and controller strategies are carefully chosen to find out the reason of voltage instability in each stage. Some voltage dynamic that have never been observed before in the faults of the same kind are analyzed in detail, and an equivalent voltage sensitive dynamic model of DFIG is proposed for the fast computation. The conclusions about the voltage dynamics are validated by the actual PMU observation evidence.

Modeling and Analysis of Variable Wind Speed Turbine System Using Back to Back Converter (Back to bock 컨버터를 갖는 가변속 풍력터빈 시스템의 모델링과 해석)

  • Kim, Eel-Hwan;Kang, Keong-Bo;Kim, Jae-Hong;Moon, Sang-Ho;Oh, Sung-Bo;Kim, Se-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.150-157
    • /
    • 2005
  • This paper presents the simulation modeling and analysis of variable wind speed turbine system(VWTS) using the doubly fed induction generator(DFIG) connected the back to back converter system in the rotor side. In the simulation, using the model system which has the 660[kW] rated power, blade control and the dual converter system are modeled for verifying the control characteristics. The VWTS is controlled by the optimal pitch angle for maximum output power under the rated wind speed, and for the rated output power over the rated wind speed. And also power factor is controlled by the reactive power. To verify the effectiveness of the proposed method, simulation results are compared with the actual data from the V47 VWTS located in Hangwon wind farm in Jeju-Do. According to the comparison of these results, this method shows excellent performance.

Comparison of Various Methods to Mitigate the Flicker Level of DFIG in Considering the Effect of Grid Conditions

  • Kim, Yun-Seong;Marathe, Aditya;Won, Dong-Jun
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.612-622
    • /
    • 2009
  • The short circuit ratio (SCR) of a given grid is able to show the stability of the system in the case of unwanted elements, such as wind turbulence. This paper presents the simulation of a model of the doubly fed induction generator in the simulation software PSCAD/EMTDC. This model has been used to study flicker during continuous operation and the effect of SCR and grid impedance angle on flicker emission. Simulation results show that compensation of the stator reactive power is an effective method to considerably reduce the flicker levels, irrespective of the grid conditions.

Inertial Control of a DFIG-based Wind Power Plant using the Maximum Rate of Change of Frequency and the Frequency Deviation

  • Lee, Hyewon;Kim, Jinho;Hur, Don;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.496-503
    • /
    • 2015
  • In order to let a wind generator (WG) support the frequency control of a power system, a conventional inertial control algorithm using the rate of change of frequency (ROCOF) and frequency deviation loops was suggested. The ROCOF loop is prevailing at the initial stage of the disturbance, but the contribution becomes smaller as time goes on. Moreover, its contribution becomes negative after the frequency rebound. This paper proposes an inertial control algorithm of a wind power plant (WPP) using the maximum ROCOF and frequency deviation loops. The proposed algorithm replaces the ROCOF loop in the conventional inertial control algorithm with the maximum ROCOF loop to retain the maximum value of the ROCOF and eliminate the negative effect after the frequency rebound. The algorithm releases more kinetic energy both before and after the frequency rebound and increases the frequency nadir more than the conventional ROCOF and frequency loops. The performance of the algorithm was investigated under various wind conditions in a model system, which includes a doubly-fed induction generator-based WPP using an EMTP-RV simulator. The results indicate that the algorithm can improve the frequency drop for a disturbance by releasing more kinetic energy.

Grid-connected Inverter Control Algorithm for Torque Ripple Compensation in Doubly-Fed Induction-type Wind Power Generation System (전원 전압 불평형시 이중여자 유도형 풍력발전 시스템의 토크 리플 저감을 위한 계통연계 인버터 제어 알고리즘)

  • Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.317-319
    • /
    • 2005
  • In this paper, control algorithm for torque ripple compensation in DFIG wind power generation system is proposed. A simple PI controller is designed for the negative sequence voltage cancellation using negative sequence currents in the grid-side converter. As a result, the stator voltage contains only the positive sequence components and the torque pulsation of the generator is effectively compensated. Propose algorithm is confirmed with PSCAD simulation model.

  • PDF

A Study on Fault Characteristics of DFIG in Distribution Systems Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전의 배전계통 사고특성에 관한 연구)

  • Son, Joon-Ho;Kim, Byung-Ki;Jeon, Jin-Taek;Rho, Dae-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

Development of the Wind Power Simulator Connected to the Grid (계통연계형 풍력발전 시뮬레이터 개발)

  • Choy, Young-Do;Jeon, Young-Soo;Jeon, Dong-Hoon;Sin, Jeong-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.542-545
    • /
    • 2009
  • 고창의 전력품질 실증시험장에서 계통에 연계된 풍력발전 시뮬레이터를 이용하여 풍력발전기의 특성을 파악하기 위해, 가변 풍속에서 이중여자 풍력발전기의 회전속도와 유효전력의 변화가 계통에 미치는 영향을 분석하였다. 고창의 전력품질 실증시험장은 22.9kV 계통에 전력품질 향상기기(DVR, STATCOM, SSTS)와 전력품질 외란 발생장치 등이 구축되어 있다. 모터와 VVVF를 이용하여 풍력발전기의 블레이드를 구현하고, 유도형과 이중여자 유도형 풍력발전기를 모의할 수 있는 시뮬레이터를 개발하였다. 선로의 길이를 20 kM로 가정하고, 덕적도의 풍속데이터를 이용한 가변풍속 패턴을 설정하여 풍력발전기의 회전속도에 대한 출력특성을 확인하였다.

  • PDF

Control Strategies of Doubly Fed Induction Generator -Based Wind Turbines with Crowbar Activation (Crowbar 운전을 가지는 이중여자유도발전기 풍력발전시스템의 제어전략)

  • Justo, Jackson John;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.706-707
    • /
    • 2011
  • The insertion of the crowbar system in the doubly fed induction generator rotor circuit for a short period of time during grid disturbance enables a more efficient way of limiting transient rotor current and hence protecting the rotor side converter (RSC) and the DC - link capacitor. When crowbar is activated at fault occurrence and clearance time, RSC is blocked while DC -link capacitor and the grid side converter (GSC) can be controlled to provide reactive power support at the PCC and improve the voltage which helps to comply with grid codes. In this paper, control strategies for crowbar system to limit the rotor current during fault is presented with RSC and GSC controllers are modified to control PCC voltage during disturbance to enhance DFIG wind farm to comply with some strict grid codes. Model simulated on MATLAB/Simulink verify the study through simulation results presented.

  • PDF

Analysis and Compensation of Current Measurement Errors in a Doubly Fed Induction Generator

  • Son, Yung-Deug;Im, Won-Sang;Park, Han-Seok;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.532-540
    • /
    • 2014
  • It is necessary to measure the current of rotor for controlling the active and reactive power generated by the stator side of the doubly fed induction generator (DFIG) system. There are offset and scaling errors in the current measurement. The offset and scaling errors cause one and two times current ripples of slip frequency in the synchronous reference frame of vector control, respectively. This paper proposes a compensation method to reduce their ripples. The stator current is variable according to the wind force but the rotor current is almost constant. Therefore input of the rotor current is more useful for a compensation method. The proposed method adopts the synchronous d-axis current of the rotor as the input signal for compensation. The ripples of the measurement errors can be calculated by integrating the synchronous d-axis stator current. The calculated errors are added to the reference current of rotor as input of the current regulator, then the ripples are reduced. Experimental results show the effectiveness of the proposed method.