Browse > Article
http://dx.doi.org/10.5370/JEET.2015.10.6.2240

Investigation and Simulation Study on the Cascading Trip-off Fault of a Large Number of Wind Turbines in China on May 14, 2012  

Qiao, Ying (State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University)
Lu, Zong-Xiang (State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University)
Lu, Ji (State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University)
Ruan, Jia-Yang (State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University)
Wu, Lin-lin (North China Electric Power Research Institution)
Publication Information
Journal of Electrical Engineering and Technology / v.10, no.6, 2015 , pp. 2240-2248 More about this Journal
Abstract
The integration of the large-scale wind power brings great challenge to the stability of the power grid. This paper investigates and studies the fault on May 14, 2012 of the large-scale cascading trip-off of wind turbines in North China. According to the characteristics of the voltage variation, the fault process is divided into three stages: the pre-event stage, the critical stage before cascading, and the cascading stage. The scenes in the fault are reproduced, using the full-size actual power system model. Simulation models of double-fed induction generators (DFIGs) and SVCs including protection settings and controller strategies are carefully chosen to find out the reason of voltage instability in each stage. Some voltage dynamic that have never been observed before in the faults of the same kind are analyzed in detail, and an equivalent voltage sensitive dynamic model of DFIG is proposed for the fast computation. The conclusions about the voltage dynamics are validated by the actual PMU observation evidence.
Keywords
Wind power; Fault analysis; Cascading trip-off; Voltage instability; Overvoltage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. Milano, Power System Analysis Toolbox: Documentation for PSAT version 1.3.4, Nov. 2002.
2 X. Ye, Y. Qiao and Z.X. Lu, “Cascading Tripping out of Numerous Wind Turbines in China: Fault Evolution Analysis and Simulation Study,” in Power and Energy Society General Meeting, San Diego, Canada, July 2012.
3 V. Akhmatov and P. B. Eriksen, “A Large Wind Power System in Almost Island Operation - A Danish Case Study”, IEEE Trans. Power System, vol. 22, no. 3, pp. 937-943, Aug. 2007   DOI
4 J. Lu, Y. Qiao, Z. X Lu and J.Y. Ruan, “Survey and Study on the Overvoltage Fault Evolution of A Largescale Wind Power Base,” in International Conference on Wind energy Gird-Adaptive Technologies, Jeju, Korea, Oct. 2014.
5 C.W. Taylor. Power System Voltage Stability. New York: McGraw-Hill, Companies, Inc, 1994:12-15.
6 Richard Piwko, Nicholas Miller, and Juan Sanchez-Gasca, et al. “Integrating Large Wind Farms into Weak Power Grids with Long Transmission Line,” in Power Electronics and Motion Control Conference, Shanghai, China, August 2006.
7 G. Byeon, I. Park, and G. Jang, “Modeling and control of a doubly-fed induction generator (DFIG) wind power generation system for real-time simulations”, Journal of Electrical Engineering & Technology, vol. 5, no. 1, pp. 61-69, Mar. 2010   DOI
8 F. Wu, X. P. Zhang, K. Godfrey, P. Ju. “Small Signal Stability Analysis and Optimal Control of a Wind Turbine with Doubly Fed Induction Generator,” IET Generation, Transmission & Distribution, vol.1, no.5, pp.751-760, Aug. 2007.   DOI
9 D. Karisson and D. J. Hill, “Modeling and Identification of Nonlinear Dynamic Loads in Power Systems,” IEEE Trans. Power Systems, vol.9, no.1, pp.157-166, Feb.1994.   DOI
10 E.H. Kim, J.H. Kim, S.H. Kim, J. Choi, K.Y. Lee, H.C. Kim, “Impact Analysis of Wind Farms in the Jeju Island Power System,” IEEE Systems Journal, vol. 6, no. 1, pp. 134-139, Mar. 2012   DOI
11 K. B. Kilani, M. Elleuch. “Structural Analysis of Voltage Stability in Power Systems Integrating Wind Power,” IEEE Trans. Power System, vol.28, no.4, pp.3785-3794, Nov. 2013.   DOI
12 World Wind Energy Association (WWEA), World Wind Energy Half-year Report 2014, September. 2014.
13 Union for the Coordination of Transmission of Electricity (UCTE), Final Report System Disturbance on 4 November 2006, Brussels, Belgium: UCTE, 2006.
14 D. Xu, W. Hu, F. Gao and X. H. Yang,“ Analysis on Mechanism and Preventing Strategies of Cascading Tripping out of Numerous Wind Turbines in China,” in 2014 International Conference on Power System Technology, Chengdu, China, Oct. 2014.
15 S. K. Konar, D. Chatterjee, and S. Patra, “V-Qsensitivity-based index for assessment of dynamic voltage stability of power systems, ” IET Generation, Transmission & Distribution, vol.9, no.7, pp.677-685, April. 2015.   DOI
16 N. R. Ullah, and T. Thiringer, “Variable Speed Wind Turbines for Power System Stability Enhancement,” IEEE Trans. Energy Conversion, vol.22, no.1, pp.52-60, Mar. 2007   DOI
17 Y. Z. Lin, L. B. Shi, L. Z. Yao, Y. X. Ni, S. Y. Qin, R. M. Wang, J. P. Zhang. “An analytical solution for voltage stability studies incorporating wind power”, Journal of Electrical Engineering & Technology, vol.10, no.3, pp.865-876, May, 2015   DOI
18 V. S. S. Kumar, K. K. Reddy, and D. Thukaram, “Coordination of Reactive Power in Grid-Connected Wind Farms for Voltage Stability Enhancement,” IEEE Trans. Power System, vol.29, no.5, pp.2381- 2390, Sep.2014.   DOI