• Title/Summary/Keyword: DEM method

Search Result 593, Processing Time 0.027 seconds

A Study on the Ultimate End Bearing Capacity of Drilled Shafts in Rocks (암반에 설치된 현장타설말뚝의 극한선단지지력에 관한 연구)

  • Jeong, Sangseom;Lee, Jaehwan;Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.5-15
    • /
    • 2013
  • The end bearing capacity of rock-socketed drilled shafts under axial loading is investigated by Hoek-cell tests and a numerical analysis. From the test results, it was found that the ultimate end bearing capacity ($q_{max}$) was influenced by pile diameter, rock mass modulus and the spacing of discontinuity. A new ultimate end bearing capacity method is proposed by taking end bearing capacity influence factors, including rock mass discontinuity, based on field data. Through comparisons with other field data, the proposed $q_{max}$ method represents a definite improvement in the prediction of ultimate end bearing capacity of rock-socketed drilled shafts.

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.

Rural Land Cover Classification using Multispectral Image and LIDAR Data (디중분광영상과 LIDAR자료를 이용한 농업지역 토지피복 분류)

  • Jang Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.101-110
    • /
    • 2006
  • The accuracy of rural land cover using airborne multispectral images and LEAR (Light Detection And Ranging) data was analyzed. Multispectral image consists of three bands in green, red and near infrared. Intensity image was derived from the first returns of LIDAR, and vegetation height image was calculated by difference between elevation of the first returns and DEM (Digital Elevation Model) derived from the last returns of LIDAR. Using maximum likelihood classification method, three bands of multispectral images, LIDAR vegetation height image, and intensity image were employed for land cover classification. Overall accuracy of classification using all the five images was improved to 85.6% about 10% higher than that using only the three bands of multispectral images. The classification accuracy of rural land cover map using multispectral images and LIDAR images, was improved with clear difference between heights of different crops and between heights of crop and tree by LIDAR data and use of LIDAR intensity for land cover classification.

Development of 2D Urban Inundation Analysis Model using Adaptive Mesh Refinement Method (메쉬 세분화 기법을 이용한 2차원 침수해석 모형의 개발)

  • Lee, Seung-soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.93-93
    • /
    • 2016
  • 최근 증가하고 있는 기후변화에 의해 설계빈도를 상회하는 강우의 발생빈도가 증가하고 있으며, 이로 인한 도시유역의 내수범람 피해가 증가하고 있다. 도시유역에서 발생하는 침수 피해의 경우 인적 물적 자원이 집중되어 있는 도시의 특성으로 인해 침수로 인한 직접적 피해 규모가 상당할 뿐만 아니라 침수 발생 후 세균 및 박테리아에 의해 발생하는 수인성 전염병의 유행 등과 같은 2차적 피해 또한 심각한 사회적 비용을 초래할 수 있어 도시유역의 침수 피해를 저감시키기 위한 대책이 절실히 요구되어지고 있다. 도시유역의 침수를 예방하기 위한 대책은 구조적 비구조적 대책으로 구분되어 질 수 있으며 구조적 대책의 경우 침수 피해 예방에 직접적인 효과를 낼 수 있다는 장점이 있으나 대규모 사업예산 및 사업 기간으로 인해 직접적 효과를 보기까지 상대적으로 긴 시간이 필요할 뿐만 아니라 사업 진행 중 대상지역 거주민들의 민원으로 인한 갈등 조정 등으로 인해 사업실행에 어려움을 겪고 있다. 이러한 측면에서 비구조적 대책의 일환인 수치해석을 통한 침수피해 재현 및 침수원인 파악을 통한 구조개선 제안은 구조적 대책의 단점을 보완할 수있는 좋은 대안이 될 수 있다. 도시유역의 경우 비도시유역과 대조적인 차이점으로는 높은 비율의 불투수층, 복잡한 지형, 다수의 인공 구조물 및 배수관망 시스템 등을 들 수 있으며, 침수해석 모형의 정확도를 높이기 위해서는 복잡한 지형의 효율적인 처리가 무엇보다 중요하다. 일반적으로 이용되는 2차원 침수해석 모형들은 직교구조 격자 또는 비구조 격자를 이용하여 지형을 묘사하고 있으며 DEM 자료를 직접 사용하는 직교구조 격자의 경우 지형 데이터 생성이 상대적으로 쉽다는 장점이 있으나 복잡한 지형을 표현하기 위해서는 불필요한 지역까지 높은 해상도를 이용해야 하며 이로 인하여 모의시간이 지나치게 길어지는 문제점이 발생한다. 비구조 격자의 경우 상대적으로 복잡한 도시 유역을 잘 묘사할 수 있다는 장점이 있으나 격자망 생성에 필요한 데이터가 많고 격자망 생성에 지나치게 많은 시간과 노력이 소요된다는 단점이 있다. 따라서 본 연구에서는 위에서 언급한 두 가지 방법의 장점만을 취할 수 있도록 메쉬 세분화 기법을 이용한 2차원 침수해석 모형을 개발 하여 복잡한 지형은 고해상도 메쉬를 이용하여 보다 자세히 묘사하고 상대적으로 복잡하지 않은 지형은 저해상도 메쉬를 이용하여 계산시간을 단축시킬 수 있도록 하였다. 수치해석 기법으로는 엇갈림 격자를 이용하는 Leap-Frog 기법과 유한차분 (Finite difference Method)기법을 이용하였다.

  • PDF

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

An Optimal Digital Image Analysis Technique for Measuring Deformation of Granular Soils (사질토의 변형 측정을 위한 최적의 디지털 이미지 해석 기법)

  • Jang, Eui-Ryong;Jung, Young-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.119-130
    • /
    • 2009
  • To measure the soil deformation, two common techniques of the digital image analysis-Particle Image Velocimetry (PIV) and Digital Image Correlation (DIC)-have been used. To generally apply these techniques to the soils, the accuracy of these techniques should be evaluated under various conditions. In this study, the influence factors including the image resolution, the degree of displacement and deformation, the size of pixel subsets, and analysis techniques were analyzed. The deformation of an idealized particle assembly using the discrete element method was measured by the digital image analyses, and then the results were compared with the actual deformations. To conduct the optimal digital image analysis, various factors are systematically analyzed in terms of the degree of the displacement and the deformation.

A Study of Vehicle Diagnostic Data Processing using Diagnostic Communications (진단 통신을 활용한 차량 진단데이터 처리 연구)

  • Chang, Moon-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.267-270
    • /
    • 2021
  • In order to diagnose a vehicle, it is achieved by collecting diagnostic data within the ECU or between ECUs and managing the diagnostic data by utilizing various communication methods through an electronic device composed of an ECU(Electronic Control Unit), which is an automotive electronic device. As communication methods, LIN, CAN, FlexRay are mainly used. Recently, wired/wireless communication is being used based on Ethernet. In order to perform vehicle diagnosis, it is necessary to know the diagnosis code generated by the ECU and to collect diagnosis data using diagnosis communication. In addition, diagnostic data can be managed from the ECU only when the application software required for vehicle diagnosis is configured. If many automobile manufacturers are manufacturing ECUs based on the AUTOSAR standard, which is an automotive electronic standard, the software structure is also configured to be applied according to the standard. In this paper, we understand the vehicle diagnosis communication method of the AUTUSAR standard, study the configuration and processing method of diagnosis data, and study the contents of software components, diagnosis communication, and diagnosis event processing.

  • PDF

Development of Hybrid Geoid using the Various Gravimetric Reduction Methods in Korea (다양한 중력학적 환산방법을 적용한 한국의 합성지오이드 개발)

  • Lee, Dong-Ha;Lee, Suk-Bae;Kwon, Jae Hyoun;Yun, Hong-Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.741-747
    • /
    • 2008
  • Nowadays, the accuracy of the geoid model has been improved through development of the combination model which was composed of traditional gravimetric geoid and geometric geoid by the GPS/leveling data in USA and Japan. It is a state of the art method in geoid modeling field that what so called hybrid geoid. In this paper, as a basic study to develop Korean hybrid geoid model, we studied gravimetric geoid solutions using three gravity reduction methods (Helmert's condensation method, RTM method and Airy-isostatic method) and evaluated the usefulness of each method in context of precise geoid. The gravimetric geoid model were determined by restoring the gravity anomalies (included TC) and the indirect effects were made from various reduction methods on the EIGEN-CG03C reference field. The results are compared with respect to the geometric geoid undulation determined from 498 GPS/leveling after LSC fitting. The results showed that hybrid geoid with RTM (Residual terrain model) reduction method was most accurate method and the value of the difference compared to geometric geoid was $0.001{\pm}0.053m$.

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization (최적 4 진트리 격자화를 이용한 중력 및 중력 변화율 탐사에서의 고속 지형보정)

  • Davis, Kristofer;Kass, M.Andy;Li, Yaoguo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • We present a method for modelling the terrain response of gravity gradiometry surveys utilising an adaptive quadtree mesh discretization. The data- and terrain-dependent method is tailored to provide rapid and accurate terrain corrections for draped and barometric airborne surveys. The surface used in the modelling of the terrain effect for each datum is discretized automatically to the largest cell size that will yield the desired accuracy, resulting in much faster modelling than full-resolution calculations. The largest cell sizes within the model occur in areas of minimal terrain variation and at large distances away from the datum location. We show synthetic and field examples for proof of concept. In the presented field example, the adaptive quadtree method reduces the computational cost by performing 351 times fewer calculations than the full model would require while retaining an accuracy of one E$\"{o}$tv$\"{o}$s for the gradient data. The method is also used for the terrain correction of the gravity field and performed 310 times faster compared with a calculation of the full digital elevation model.