Browse > Article
http://dx.doi.org/10.9720/kseg.2014.1.123

Basic Concepts and Geological Applications of LiDAR  

Kim, Hyun-Tae (Department of Earth Environmental Sciences, Pukyong National University)
Kim, Young-Seog (Department of Earth Environmental Sciences, Pukyong National University)
We, Kwang-Jae (Geostory Incorporated)
Publication Information
The Journal of Engineering Geology / v.24, no.1, 2014 , pp. 123-135 More about this Journal
Abstract
Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.
Keywords
Active faults; Lineament analysis; Geomorphic analysis; Remote sensing; Airborne LiDAR;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Okada, A., Watanabe, M., Sato, H., Jun, M. S., Jo, W. R., Kim, S. K., Jeon, J. S., Chi, H. C., and Oike, K., 1994, Active fault topography and trench survey in the central part of the Yangsan fault, southeast Korea. Journal of Geography, 103, 111-126.   DOI
2 Richard, H. G. Jr., 1999, 3-D Structural Geology : a parctical guide to surface and subsurface map interpretation. Springer, New York, 320p.
3 Ridgway, J. R., Minster, J. -B., Williams, N., Bufton, J. L., and Krabill, W. B., 1997, Airborne laser altimeter survey of Long Valley, California. Geophysical Journal International, 131(2), 267-280.   DOI   ScienceOn
4 Sugawara, D., Goto, K., Chague-Goff, C., Fujino, S., Goff, J., Jaffe, B., Nichimura, Y., Richmond, B., Szczucinski, W., Tappin, D. R., Witter, R., and Ylianto, E., 2011, Initial field survey report of the 2011 East Japan Tsunami in Sendai, Natori and Iwanuma Cities. UNESCO-Ioc International Tsunami Survey Team, 16p.
5 Yoon, J. -S. and Lee, K. -S., 2006a, Prospects for understanding forest structure using LiDAR. Proceedings of the KSRS spring conference, Korean Journal of Remote Sensing, 149-152.
6 Yoon, J. -S., Lee, K. -S., Shin, J. -I., and Woo, C. -S, 2006b, Characteristics of airborne LiDAR data and ground points separation in forested Area. Korean Journal of Remote Sensing, 22(6), 533-542.   과학기술학회마을   DOI
7 Zhang, K., Chen, S. -C., Whitman, D., Shyu, M. -L., Yan, J., and Zhang, C., 2003, A progressive morphological filter for removing nonground measurements form airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882.   DOI   ScienceOn
8 Zielke, O. and Arrowsmith, J R., 2012, LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8(1), 206-221.   DOI
9 Bistacchi A., Griffith, W. A., Smith, S. A. F., Toro, G. D., Jones, R., and Nielsen, S., 2011, Fault roughness at seismogenic depths from LIDAR and photogrammetric analysis. Pure and Applied Geophysics. 168, 2345-2363.   DOI
10 Arrowsmith, J. R. and Zielke, O., 2009, Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, 113, 70-81.   DOI
11 Blair, J. B., Rabine, D. L., and Hofton, M. A., 1999, The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. Journal of Photogrammetry and Remote sensing, 54, 115-122.   DOI
12 Burnman, H., 2000, Calibration and orientation of airborne image and laser scanner data using GPS and INS. PhD Thesis, Royal Institute of Technology, Stockholm, 125p.
13 Carter, W. E. and Shrestha, R. L. 1997, Airborne laser swath mapping: instant snapshots of our changing beaches. In Proceedings of the Fourth International Conference: Remote Sensing for Marine and Coastal Environments, Environmental Research Institute of Michi-gan, Ann Arbor, 1, 298-307.
14 Choi, S. -J., Merritts, D. J., and Ota, Y., 2008, Elevations and ages of marine terraces and late Quaternary rock uplift in southeastern Korea. Journal of Geophysical Research. 113, B10403.   DOI
15 Daniel R. M., Harvey M. K., GIfford H. M., Geoge L. K., Joseph F. W., and Galan W. M., 1990, Age estimates and uplift rates for late pleistocene marine terraces' Southern Oregon portion of the Cascadia forearc. Journal of Geophysical Research, 95, 6685-6698.   DOI
16 Chung, D. K., Goo, S. H., Eo, J. H., and Yoo, H. H., 2005, DTM Extraction from LiDAR data by filtering method. GIS/RS Joint Spring Symposium, Construction Engineeris Hall, 19 May 2005, 355-361.
17 Han, J. -G., Kim, S. -P., Chang, D. -H., and Chang, T. -S., 2009, Estimation of inundation damages of urban area around Haeundae beach induced by super storm surge using airborne LiDAR data. The Journal of GIS Association of Korea, 17(3), 341-350.   과학기술학회마을
18 Chwae, U. -C. and Choi, S. -J., 2007, Active fault study of Korea: the past, present and future. Quaternary Tectonics of Southeastern Korea, Korea Institute of Geoscience and Mineral, 31p.
19 Costantino, D. and Angelini, M. G., 2011, Terrestrial LiDAR survey of archaeological site for prototyping. Journal of Earth Science and Engineering, 1, 1-8.
20 Flood, M. and Gutelius, B., 1997, Commercial implications of to-pographic terrain mapping using scanning airborne laser radar. Photogram. Eng. Remote Sensing. 63, 327-329 and 363-366.
21 Haugerud, R. A. and Harding, D. J., 2001, Some algorithms for virtual deforestation (vdf) of lidar topographic survey data. International Archives of Photogrammetry and Remote Sensing, 34-3(W4), 211-217.
22 Haugerud, R. A., Harding, D. J., Johnson, S. Y., Harless, J. L., Weaver, C. S., and Sherrod, B. L., 2003, High-resolution LiDAR topography of the Puget Lowland, Washington-a bonanza for earth science. GSA Today, Geological Society of America 13(6), 4-10.
23 Hudnut, K. W., Borsa, A., Glennie, C., and Minster, J. -B., 2001, High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, Earthquake (Mw7.1) from airborne laser swath mapping. Bulletin of the Seismological Society of America, 92(4), 1570-1576.
24 Kraus, K. and Pfeifer, N., 1998, Determination of terrain models in wooded areas with airborne laser scanner data. Journal of Photogrammetry and Remote Sensing, 53, 193-203.   DOI   ScienceOn
25 Kim, Y. -S., Kihm, J. -H., and Jin, K., 2011, Interpretation of the rupture history of a low slip-rate active fault by analysis of progressive displacement accumulation: an example from the Quaternary Eupcheon Fault, SE Korea. Journal of the Geological Society, 168, 273-288.   DOI   ScienceOn
26 Krabill, W. B., Thomas, R. H., Martin, C. F., Swift, R. N., and Frederick, E. B., 1995, Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sensing, 16(7), 1211-1222.   DOI
27 Lee, I., 2006, A feature based approach to extracting ground points from LiDAR data, Korean Journal of Remote Sensing, 22(4), 265-274.   과학기술학회마을   DOI
28 Kyung, J. -B., 1997, Paleoseismological study on the Mid-northern part of Ulsan Fault by trench method. The Journal of Engineering Geology, 7(1), 81-90.   과학기술학회마을
29 Lee, B. -J., Kim, Ju-Y., Yang, D. -Y., and Jung, H. -K., 2000, The characteristics of quaternary fault and coastal terrace around Suryumri area. The Journal of Engineering Geology, 10(2), 133-149.   과학기술학회마을
30 Lerma, J. L., Navarro, S., Cabrelles, M., and Villaverde, V., 2010, Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpallo' as a case study. Journal of Archaeological Science, 37, 499-507.   DOI
31 O'Leary, D. W., Fried man, J. D., and Pohn, H. A., 1976, Lineament, linear, lineation, some proposed new standards for old terms: Geological Society of America, 87, 1463-1469.   DOI
32 Ruiz, A., Kornus, W., Talaya, J., and Colomer, J. L., 2003, Terrain modeling in an extremely steep mountain: a combination of Airborne and Terrestrial LiDAR. Workshop on airborne laser scanning, Dresden, 8-10 October 2003, 35p.