Browse > Article
http://dx.doi.org/10.12989/acc.2022.13.1.083

The comparison between NBD test results and SCB test results using experimental test and numerical simulation  

Fu, Jinwei (School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power)
Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
Haeri, Hadi (State Key Laboratory for Deep Geomechanics and Underground Engineering)
Naderi, K. (State Key Laboratory for Deep Geomechanics and Underground Engineering)
Fatehi Marji, Mohammad (Mine Exploitation Engineering Department, Faculty of Mining and Metallurgy, Institution of Engineering, Yazd University)
Guo, Mengdi (School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power)
Publication Information
Advances in concrete construction / v.13, no.1, 2022 , pp. 83-99 More about this Journal
Abstract
The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.
Keywords
crack propagation patterns; discrete element method; fracture toughness; NBD and SCB tests;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Tutluoglu, L. and Keles, C. (2011), "Mode I fracture toughness determination with straight notched disk bending method", Int. J. Rock Mech. Min. Sci., 48(8), 1248-1261. https://doi.org/10.1016/j.ijrmms.2011.09.019.   DOI
2 Wang, J., Xie, L., Xie, H., Ren, L., He, B., Li, C. and Gao, C. (2016), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36, 1120-1129. https://doi.org/10.1016/j.jngse.2016.03.046.   DOI
3 Alkilicgil, C. (2010), "Development of specimen geometries for mode I fracture toughness testing with disc type rock specimens", Ph.D. Dissertation of Philosophy, Middle East Technical University.
4 Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk test", Int. J. Fract., 18(4), 279-291. https://doi.org/10.1007/BF00015688.   DOI
5 Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583. https://doi.org/10.12989/sem.2017.63.5.575.   DOI
6 Wei, M.D., Dai, F., Xu, N.W., Zhao, T. and Liu, Y. (2017), "An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks", Int. J. Rock Mech. Min. Sci., 99, 28-38. https://doi.org/10.1016/j.ijrmms.2017.09.004.   DOI
7 Nabil, B., Abdelkader, B., Miloud, A. and Noureddine, B. (2017), "On the mixed-mode crack propagation in FGMs plates: Comparison of different criteria", Struct. Eng. Mech., 61(3), 371-379. https://doi.org/10.12989/sem.2017.61.3.371.   DOI
8 Wei, M.D., Dai, F., Xu, N.W. and Zhao, T. (2018), "Experimental and numerical investigation of cracked chevron notched Brazilian disc specimen for fracture toughness testing of rock", Fatig. Fract. Eng. Mater. Struct., 41(1), 197-211. https://doi.org/10.1111/ffe.12672.   DOI
9 Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012.   DOI
10 Yao, W. and Xia, K. (2019), "Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: Fundamentals and applications", J. Rock Mech. Geotech. Eng., 11(5), 1066-1093. https://doi.org/10.1016/j.jrmge.2019.03.003.   DOI
11 Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.   DOI
12 Akbardoost, J., Ghadirian H.R. and Sangsefidi, M. (2017), "Calculation of the crack tip parameters in the holed cracked flattened Brazilian disk (HCFBD) specimens under wide range of mixed mode I/II loading", Fatig. Fract. Eng. Mater. Struct., 40(9),1416-1427. https://doi.org/10.1111/ffe.12585.   DOI
13 Chong, K. and Kuruppu, M.D. (1984), "New specimen for fracture toughness determination for rock and other materials", Int. J. Fract., 26(2), R59-R62. https://doi.org/10.1007/BF01157555.   DOI
14 Wang, J., Huang, S., Guo, W., Qiu, Z. and Kang, K. (2020), "Experimental study on fracture toughness of a compacted clay using semi-circular bend specimen", Eng. Fract. Mech., 224, 106814. https://doi.org/10.1016/j.engfracmech.2019.106814.   DOI
15 Bergmann, G., and Vehoff, H. (1994), "Precracking of NiAl single crystals by compression-compression fatigue and its application to fracture toughness testing", Scripta Metallurgica et Materialia, 30(8). https://doi.org/10.1016/0956-716X(94)90539-8.   DOI
16 Nasseri, M.H.B. and Mohanty, B. (2008), "Fracture toughness anisotropy in granitic rocks", Int. J. Rock Mech. Min. Sci., 45(2), 167-193. https://doi.org/10.1016/j.ijrmms.2007.04.005.   DOI
17 Xu, N.W., Dai, F., Wei, M.D., Xu, Y. and Zhao, T. (2016), "Numerical observation of three-dimensional wing cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading", Rock Mech. Rock Eng., 49(1), 79-96. https://doi.org/10.1007/s00603-015-0736-8.   DOI
18 Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.   DOI
19 Yaylaci, M., Terzi, C. and Avcar, M. (2019a), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.   DOI
20 Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", Int. J. Rock Mech. Min. Sci., 49, 105-112. https://doi.org/10.1007/978-3-319-07713-0_3.   DOI
21 Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens", Eng. Geol., 66(1-2), 79-97. https://doi.org/10.1016/S0013-7952(02)00033-9.   DOI
22 Cundall, P.A. and Potyondy, D.O. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364.   DOI
23 Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65.   DOI
24 Dai, F. and Xia, K.W. (2013), "Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite", Int. J. Rock Mech. Min. Sci., 60, 57-65. https://doi.org/10.1016/j.ijrmms.2012.12.035.   DOI
25 Nezhad, M.M., Fisher, Q.J., Gironacci, E. and Rezania, M. (2018), "Experimental study and numerical modeling of fracture propagation in shale rocks during Brazilian disk test", Rock Mech. Rock Eng., 51(6), 1755-1775. https://doi.org/10.1007/s00603-018-1429-x.   DOI
26 Chen, F., Cao, P., Rao, Q.H. and Sun, Z.Q. (2003), "Use of double edge-cracked Brazilian disk geometry for compression-shear fracture investigation of rock", J. Central South Univ. Tech., 10(3), 211-215. https://doi.org/10.1007/s11771-003-0011-0.   DOI
27 Cui, Z.D., Liu, D.A., An, G.M., Sun, B. and Zhou, M. (2010), "A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness", Int. J. Rock Mech. Min. Sci., 47(5), 871-876. https://doi.org/10.1016/j.ijrmms.2009.12.015.   DOI
28 Dwivedi, R.D., Soni, A.K., Goel, R.K. and Dube, A.K. (2000), "Fracture toughness of rocks under sub-zero temperature conditions", Int. J. Rock Mech. Min. Sci., 37(8), 1267-1275. https://doi.org/10.1016/S1365-1609(00)00051-4.   DOI
29 Evans, A.G. (1972), "A method for evaluating the time-dependent failure characteristics of brittle materials-and its application to polycrystalline alumina", J. Mater. Sci., 7(10), 1137-1146. https://doi.org/10.1007/BF00550196.   DOI
30 Kuruppu, M.D. (1998), "Stress intensity factors of chevron-notched semi-circular specimen", APCOM 98 Computer Applications in the Mineral Industries International Symposium, 111-112.
31 Ouchterlony, F. (1982), "Review of fracture toughness testing of rock", SM Archiv., 7, 131-211.
32 Ouchterlony, F. (1991), "Experiences from fracture toughness testing of rock: According to the ISRM suggested methods", SveDeFo.
33 Guo, H., Aziz, N.I. and Schmidt, L.C. (1993), "Rock fracture-toughness determination by the Brazilian test", Eng. Geol., 33(3), 177-188. https://doi.org/10.1016/0013-7952(93)90056-I.   DOI
34 Haeri, H., Sarfarazi, V., Yazdani, M., Shemirani, A.B. and Hedayat, A. (2018), "Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material", Rock Mech. Rock Eng., 51(1), 173-185. https://doi.org/10.1007/s00603-017-1310-3.   DOI
35 Xu, Y., Dai, F., Zhao, T., Xu, N.W. and Liu, Y. (2016), "Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles", Rock Mech. Rock Eng., 49(8), 3083-3093. https://doi.org/10.1007/s00603-016-0978-0.   DOI
36 Iqbal, M.J. and Mohanty, B. (2007), "Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks", Rock Mech. Rock Eng., 40(5), 453-475. https://doi.org/10.1007/s00603-006-0107-6.   DOI
37 Kataoka, M., Obara, Y. and Kuruppu, M. (2015), "Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure", Rock Mech. Rock Eng., 48(4), 1353-1367. https://doi.org/10.1007/s00603-014-0665-y.   DOI
38 Kuruppu, M.D. (1997), "Fracture toughness measurement using chevron notched semi-circular bend specimen", Int. J. Fract., 86(4), L33-L38.
39 Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min. Sci., 67, 20-28. https://doi.org/10.1016/j.ijrmms.2014.01.008.   DOI
40 Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.   DOI
41 Khan, K. and Al-Shayea, N.A. (2000), "Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia", Rock Mech. Rock Eng., 33(3), 179-206. https://doi.org/10.1007/s006030070006.   DOI
42 Lee, J.W. and Lee, J.Y. (2018), "A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks", Struct. Eng. Mech., 66(1), 125-138. https://doi.org/10.12989/sem.2018.66.1.125.   DOI
43 Ouchterlony, F. (1988) "ISRM commission on testing methods: Suggested methods for determining fracture toughness of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71-96
44 Yu, K. and Lu, Z. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 199-213. https://doi.org/10.12989/cac.2015.15.2.199.   DOI
45 Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 149-167. https://doi.org/10.12989/cac.2013.11.2.149.   DOI
46 Shiryaev, A.M. and Kotkis, A.M. (1983), "Methods for determining fracture toughness of brittle porous materials", Indust. Lab., 48(9), 917-918.
47 Wei, M.D., Dai, F., Xu, N.W., Liu, Y. and Zhao, T. (2018), "A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks", Eng. Fract. Mech., 190, 1-15. https://doi.org/10.1016/j.engfracmech.2017.11.041.   DOI
48 Yaylaci, M., Bayrak, M.C . and Avcar, M. (2019), "Finite element modeling of receding contact problem", Int. J. Eng. Appl. Sci., 11(4), 468-475. https://doi.org/10.24107/ijeas.646718.   DOI
49 Yin, T., Wu, Y., Li, Q., Wang, C. and Wu, B. (2020), "Determination of double-K fracture toughness parameters of thermally treated granite using notched semi-circular bending specimen", Eng. Fract. Mech., 226, 106865. https://doi.org/10.1016/j.engfracmech.2019.106865.   DOI
50 Civalek, O . and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.   DOI
51 Monfared, M.M. (2017), "Mode III SIFs for interface cracks in an FGM coating-substrate system", Struct. Eng. Mech., 64(1), 71-79. https://doi.org/10.12989/sem.2017.64.1.071.   DOI
52 Tutluoglu, L. and Keles, C. (2012), "Effects of geometric factors on mode I fracture toughness for modified ring tests", Int. J. Rock Mech. Min. Sci., 51, 149-161. https://doi.org/10.1016/j.ijrmms.2012.02.004.   DOI
53 Shi, X., Yao, W., Xia, K., Tang, T. and Shi, Y. (2019), "Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens", Eng. Fract. Mech., 205, 136-151. https://doi.org/10.1016/j.engfracmech.2018.11.027.   DOI
54 Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech, 52(4), 829-841. https://doi.org/10.12989/sem.2014.52.4.829.   DOI
55 Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2018), "Two new triangular finite elements containing stable open cracks", Struct. Eng. Mech., 65(1), 99-110. https://doi.org/10.12989/sem.2018.65.1.099.   DOI