• Title/Summary/Keyword: DEM analysis

Search Result 675, Processing Time 0.03 seconds

Evaluation of ALOS PALSAR Interferometry in the West Coast of Korea;Preliminary Results

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.25-28
    • /
    • 2007
  • Precise digital elevation model (DEM) is an important issue in coastal area where DEMs in a time series are especially required. Although LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise coastal DEM have been made using radar interferometry, waterline method. One of these methods, Spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. The purpose of this study is construction of DEM using the ALOS PALSAR data using radar interferometry and analysis of surface characteristics by coherence and magnitude map over the Ganghwado and Siwha tidal flats and near coastal lands.

  • PDF

Characteristics of Land-use Changes Northern Cheongju Region using Landsat Images and DEM (Landsat영상과 DEM을 이용한 청주북부지역의 토지이용 변화특성)

  • Na, Sang-Il;Park, Jong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.667-672
    • /
    • 2007
  • Land-use in Cheongju region is changing rapidly because of the increased interactions of human activities with the environment as population increases. We used multi-temporal Landsat images (1991 and 2000) and DEM data in a post-classification analysis with GIS to map land-use distribution and to analyse factors influencing the land-use changes for Cheongju City. Land-use statistics revealed that substantial land-use changes have taken place and that the built-up areas have expanded by about $17.57km^2(11.47%)$ over the study period (1991-2000). Agricultural lands and forests have decreased substantially while urban and barren lands have been on the increase. Rapid economic developments together with the increasing population were noted to be the major factors influencing rapid land use changes. Urban expansion has replaced urban and barren lands, thereby affecting habitat quality and leading to serious environmental degradation.

  • PDF

A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method (이산요소법을 이용한 Graphite 분말 압축 특성 연구)

  • Jeong, Jun Hyeok;Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

A Study on the Effects of Airborne LiDAR Data-Based DEM-Generating Techniques on the Quality of the Final Products for Forest Areas - Focusing on GroundFilter and GridsurfaceCreate in FUSION Software - (항공 LiDAR 자료기반 DEM 생성기법의 산림지역 최종산출물 품질에 미치는 영향에 관한 연구 - FUSION Software의 GroundFilter 및 GridsurfaceCreate 알고리즘을 중심으로 -)

  • PARK, Joo-Won;CHOI, Hyung-Tae;CHO, Seung-Wan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.154-166
    • /
    • 2016
  • This study aims to contribute to better understanding the effects of the changes in the parameter values of GroundFilter algorithm(GF), which performs filtering process, and of GridsurfaceCreate algorithm(GC), which creates regular grid, provided in Fusion software on the accuracy of elevation of the final LiDAR-DEM products through comparative analysis. In order to test whether there are significant effects on the accuracy of the final LiDAR-DEM products due to the changes of GF(1, 3, 5, 7, 9) parameter levels and GC(1, 3, 5, 7, 9) parameter levels, two-way ANOVA is conducted based on residuals. The residuals are calculated using the differences between each sample plot's paired field-measured and DEM-derived elevation values given each individual GF and GC level. After that, Tukey HSD test is conducted as a post hoc test for grouping the levels. As a result of two-way ANOVA test, it is found that the change in the GF levels significantly affects the accuracy of LiDAR-DEM elevations(F-value : 27.340, p < 0.01), while the change in the GC levels does not significantly affect the accuracy of LiDAR-DEM elevations(F-value : 0.457). It is also found that the interaction effect between GF and GC levels is not likely to exist(F-value : 0.247). From the results of the Tukey HSD test in the GF levels, GF levels can be divided into two groups('7', '5', '9', '3' vs '1') by the differences of means of residuals. Given the current conditions, LiDAR-DEM can achieve the best accuracy when the level '7' and '3' are given as GF and GC level, respectively.

Study on Runoff Variation by Spatial Resolution of Input GIS Data by using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형의 입력자료 해상도에 따른 유출변동 연구)

  • Jung, Chung Gil;Moon, Jang Won;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.767-776
    • /
    • 2014
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Floods are one of the most deadly and damaging natural disasters known to mankind. The flood forecasting and warning system concentrates on reducing injuries, deaths, and property damage caused by floods. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall-runoff model. In this study, grid resolution depending on the topographic factor in rainfall-runoff models presents how to respond. semi-distribution of rainfall-runoff model using the model GRM simulated and calibrated rainfall-runoff in the Gamcheon and Naeseongcheon watershed. To run the GRM model, input grid data used rainfall (two event), DEM, landuse and soil. This study selected cell size of 500 m(basic), 1 km, 2 km, 5 km, 10 km and 12 km. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, runoff volume and peak discharge which simulated cell size of DEM 500 m~12 km were continuously reduced. that results showed decrease tendency. However, input grid data except for DEM have not contributed increase or decrease runoff tendency. These results showed that the more increased cell size of DEM make the more decreased slope value because of the increased horizontal distance.

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

A Study on the Effect of Grid Size to Extract Topographical Parameters by DEM (DEM에 의한 지형인자 추출에 따른 격자크기의 영향에 관한 연구)

  • Jeong, In-Ju;Lee, Jung-Min;Kim, Sang-Yong;Lee, Jong-Chool
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.67-75
    • /
    • 2002
  • Recently, GIS tend to be studied in water resoruces field. In hydrology analysis, GIS propose way that can develop subjective element of designer objectively. The development project is conducting disaster effect estimation to breed disaster, and cope these disaster beforehand provoking soil erosion and food recently. In this study, receive value of LS factor through DEM data at volume of soil erosion computation by disaster effect estimation and whether it are some relation effect of gradient and change of soil erosion by grid size did comparative analysis. As a result, according as grid size great, gradient became slow and could know that error value of gradient great according as storing scale of digital topographical map grows.

  • PDF

Analysis of hydrologic chracterustucs for Milyang river basin with a GIS (GIS를 이용한 밀양강 유역의 지형학적 특성 분석)

  • 유승근;최성규;문상원
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.107-122
    • /
    • 2002
  • Hydrological characteristics would be utilized to apply such as hydrologic modelling or basin management. This study is to extract hydrological characteristics through DEM and stream network analysis using a hydrologic unit map and digital topographic map in Milyang river basin. OEM and stream network was generated from digital topographic map. Especially stream network was allowed direction, stream order, and topology. As a result of the study, it shows that Milyang river has been changing geologically mature stage into old phase and the landform of Milyang river correspond to Horton-Strahler's law on morphology of stream. This methodology can be applicable to other areas related to hydrological characteristics with vector data.

  • PDF

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Study on Shear Behavior Characteristics of Granular Material using DEM (DEM을 이용한 조립재료의 전단거동 특성에 관한 연구)

  • Jo, Seon-Ah;Jeong, Sun-Ah;Lee, Seok-Won;Cho, Gye-Chun;Chun, Youn-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.136-145
    • /
    • 2009
  • Factors influencing shear behavior of granular material include particle size, shape, distribution, relative density, particle crushing, etc. In this study, these factors are characterized by viewpoint of shear behavior using numerical analysis based on DEM. Geometrical particle shape is represented by a combination of small circular particles and influence of particle shape on crushing is studied through relative comparisons between clump (uncrushable) and cluster (crushable) models which are modeled using DEM. Also, particle shape is quantified by the dimensionless parameters such as circularity and convexity. The results indicate that particle shape indexes have a negative association with internal friction angle. Also, internal friction angle becomes reduced and failure envelop curve becomes nonlinear due to the particle crushing. It is also found that numerical results are quite good agreement with the experimental test conducted in this study.

  • PDF