• Title/Summary/Keyword: DEAD box RNA helicase

Search Result 17, Processing Time 0.03 seconds

Cold Shock Response and Low Temperature Stable Transcript of DEAD-box RNA Helicase in Bacillus subtilis (DEAD-box RNA Helicase 유전자가 결핍된 Bacillus subtilis의 저온 충격 반응성과 저온 안정성 전사물)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • We investigated the cold shock sensitivity of DEAD-box RNA helicase gene deleted strains of in Bacillus subtilis CU1065. To understand cold shock effects, cells were cultivated at $37^{\circ}C$ to log phase ($O.D_{600}$=0.5-0.6) and then temperature was shifted to $15^{\circ}C$. Cold shock slow down the growth rate of wild type and deleted strains of DEAD-box RNA helicase gene (ydbR, yfmL, yqfR, deaD). The growth rate of ydbR deleted strain is 5 times severely reduced compared to that of wild type strain (CU1065). But the growth rate of other three (yfmL, yqfR, deaD) deleted strains is nearly equal to the growth rate of wild type. Compared to $37^{\circ}C$, the amount of ydbR and yqfR mRNA transcripts are increased at the growth temperature of $15^{\circ}C$. On the other hands the mRNA transcripts of yfmL and deaD are not changed at both conditions of $37^{\circ}C$ and $15^{\circ}C$. Upon cold shock treatment ydbR mRNA transcript is clearly increased. After treatment of rifampicin (bacteria transcription inhibitor) the amount of ydbR mRNA was measured. Temperature shift from $37^{\circ}C$ to $15^{\circ}C$ and rifampicin treatment showed slowly decay of ydbR mRNA. But at $37^{\circ}C$ and rifampicin treatment ydbR mRNA is rapidly reduced. These results showed that cold shock induction of ydbR mRNA resulted from the stability of ydbR mRNA and not from the transcription induction of ydbR. In relation to these results, we found the cold box element of csp (cold shock protein gene) in 5' untranslated region of ydbR gene. Cold shock induction of ydbR is caused by the stability of ydbR mRNA like the stability of csp mRNA.

DEAD/DExH-Box RNA Helicases in Selected Human Parasites

  • Marchat, Laurence A.;Arzola-Rodriguez, Silvia I.;Cruz, Olga Hernandez-de la;Lopez-Rosas, Itzel;Lopez-Camarillo, Cesar
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.5
    • /
    • pp.583-595
    • /
    • 2015
  • DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.

Identification and characteristics of DDX3 gene in the earthworm, Perionyx excavatus (팔딱이 지렁이(Perionyx excavatus) DDX3 유전자의 동정 및 특성)

  • Park, Sang Gil;Bae, Yoon-Hwan;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.70-81
    • /
    • 2015
  • Helicases are known to be a proteins that use the chemical energy of NTP binding and hydrolyze to separate the complementary strands of double-stranded nucleic acids to single-stranded nucleic acids. They participate in various cellular metabolism in many organisms. DEAD-box proteins are ATP-dependent RNA helicase that participate in all biochemical steps involving RNA. DEAD-box3 (DDX3) gene is belonging to the DEAD-box family and plays an important role in germ cell development in many organisms including not only vertebrate, but also invertebrate during asexual and sexual reproduction and participates in stem cell differentiation during regeneration. In this study, in order to identify and characterize DDX3 gene in the earthworm, Perionyx excavatus having a powerful regeneration capacity, total RNA was isolated from adult head containing clitellum. Full length of DDX3 gene from P. excavatus, Pe-DDX3, was identified by RT-PCR using the total RNA from head as a template. Pe-DDX3 encoded a putative protein of 607 amino acids and it also has the nine conserved motifs of DEAD-box family, which is characteristic of DEAD-box protein family. It was confirmed that Pe-DDX3 has the nine conserved motifs by the comparison of entire amino acids sequence of Pe-DDX3 with other species of different taxa. Phylogenetic analysis revealed that Pe-DDX3 belongs to a DDX3 (PL10) subgroup of DEAD-box protein family. And it displayed a high homology with PL10a, b from P. dumerilii.

The translational landscape as regulated by the RNA helicase DDX3

  • Park, Joon Tae;Oh, Sekyung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.125-135
    • /
    • 2022
  • Continuously renewing the proteome, translation is exquisitely controlled by a number of dedicated factors that interact with the ribosome. The RNA helicase DDX3 belonging to the DEAD box family has emerged as one of the critical regulators of translation, the failure of which is frequently observed in a wide range of proliferative, degenerative, and infectious diseases in humans. DDX3 unwinds double-stranded RNA molecules with coupled ATP hydrolysis and thereby remodels complex RNA structures present in various protein-coding and noncoding RNAs. By interacting with specific features on messenger RNAs (mRNAs) and 18S ribosomal RNA (rRNA), DDX3 facilitates translation, while repressing it under certain conditions. We review recent findings underlying these properties of DDX3 in diverse modes of translation, such as cap-dependent and cap-independent translation initiation, usage of upstream open reading frames, and stress-induced ribonucleoprotein granule formation. We further discuss how disease-associated DDX3 variants alter the translation landscape in the cell.

Construction of spDbp5 Null Mutants Defective in mRNA Export (분열효모에서 spDbp5 유전자의 결실돌연변이 제조와 기능에 대한 연구)

  • Bae, Jin-Ah;Cho, Hyun-Jin;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.80-84
    • /
    • 2008
  • We constructed the null mutants of fission yeast Schizosaccharomyces pombe spDbp5 gene that is homologous to DEAD-box RNA helicase DBP5 in budding yeast Saccharomyces cerevisiae, which plays important roles in mRNA export out of nucleus. A null mutant in an $h^+/h^+$ diploid strain was constructed by replacing the spDbp5-coding region with an $ura4^+$ gene using one-step gene disruption method. Tetrad analysis showed that the spDbp5 is essential for vegetative growth. The haploid spDbp5 null mutants harboring pREP81X-spDbp5 plasmid showed extensive $poly(A)^+$ RNA accumulation in the nucleus and decrease in the cytoplasm after repression of spDbp5 expression. These results suggest that spDbp5 is also involved in mRNA export from the nucleus.

Cold-Sensitive Growth of Bacillus subtilis Mutants Deleted for Putative DEAD-Box RNA Helicase Genes (Bacillus subtilis DEAD-Box RNA Helicase 유전자 결손 균주들의 저온 민감성 생장)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.233-239
    • /
    • 2010
  • Four genes (yqfR, yfmL, ydbR, deaD) were identified as putative DEAD-box RNA helicase genes in the genomic sequence of Bacillus subtilis by homology search. To understand the function of these genes, each of the genes was deleted and the constructed strains were tested for their growth charateristics at different temperatures. The growth rate of ydbR deletion mutant ($T_d$=53 min) was a little bit reduced at $37^{\circ}C$ as compared to that of wild type strain (CU1065). But the growth rate of other three (yqfR, yfmL, deaD) deletion mutants ($T_d$=30-40 min) is nearly equal to the growth rate of wild type ($T_d$=32 min). On the other hands, the growth rate of deletion mutants were reduced at $22^{\circ}C$ in order of yqfR ($T_d$=151 min), yfmL ($T_d$=214 min), ydbR ($T_d$=343 min), which showed cold-sensitive phenotype. The deletion mutant of deaD ($T_d$=109 min) grew equally as compared to the growth rate ($T_d$=102 min) of the wild type at $22^{\circ}C$ and did not show cold-sensitive growth. Double, triple and quadruple deletion mutants of these genes were constructed, and growth rate of these mutants were measured at various temperature conditions ($22^{\circ}C$, $37^{\circ}C$, $42^{\circ}C$) using LB broth. Multiple deletion mutations showed more severe cold-sensitive growth than single deletion mutations, and double deletion of ydbR and yfmL ($T_d$=984 min) showed most cold-sensitive growth than any other double mutants. Such a cold-sensitive growth of these mutations is quite similar to the result of csdA or srmB deletion in E. coli and suggested that physiological role of ydbR and yfmL is related with ribosome assembly.

RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

  • Bish, Rebecca;Vogel, Christine
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.357-364
    • /
    • 2014
  • Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.