• Title/Summary/Keyword: DC-bias

Search Result 558, Processing Time 0.025 seconds

A Study on Etching Characteristics of SnO2 Thin Films Using High Density Plasma (고밀도 플라즈마를 이용한 SnO2 박막의 건식 식각 특성)

  • Kim, Hwan-Jun;Joo, Young-Hee;Kim, Seung-Han;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.826-830
    • /
    • 2013
  • In this paper, we carried out the investigations of both etch characteristics and mechanisms for the $SnO_2$ thin films in $O_2/BCl_3/Ar$ plasma. The dry etching characteristics of the $SnO_2$ thin films was studied by varying the $O_2/BCl_3/Ar$ gas mixing ratio. We determined the optimized process conditions that were as follows: a RF power of 700 W, a DC-bias voltage of - 150 V, and a process pressure of 2 Pa. The maximum etch rate was 509.9 nm/min in $O_2/BCl_3/Ar$=(3:4:16 sccm) plasma. From XPS analysis, the etch mechanism of the $SnO_2$ thin films in the $O_2/BCl_3/Ar$ plasma can be identified as the ion-assisted chemical reaction while the role of ion bombardment includes the destruction of the metal-oxide bonds as well as the cleaning of the etched surface form the reaction products.

Realization of a 7.7~8.5GHz 10 W Solid-State Power Amplifier (7.7~8.5 GHz 10 W 반도체 전력 증폭기의 구현에 관한 연구)

  • 박효달;김용구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2489-2497
    • /
    • 1994
  • This paper presents the development of a 10 W solid-state hybrid power amplifier(SSPA). operating over $7.7\sim8.5GHz$. The fabrication and measurement of this amplifier are performed with 3 sections, such as the front one for high gain, the middle one for driving, and high power one, to minimize the risk of failure and to increase the easiness of development. and then the final amplifier is realized by connecting 3 sections above mentioned, DC bias circuit, and temperature compensation circuit on one housing. Total small signal gain obtained is about $45\pm1dB$, the input and output return losses are 25 and 27 dB respectively. The output power measured at 1 dB gain compression point for 3 frequencies at 7.7, 8.1, and 8.5 GHz are $39.8\sim40.4dBm$, which is about 10 W. and the 3rd-order harmonic powers of 2 tones test are 13.34 dBc at output power 37.5 dBm. These obtained results satisfies the initially required specification. and the realized SSPA can be installed as a subsystem of the microwave transponder for telecommunication.

  • PDF

The Degradation Analysis of Characteristic Parameters by NBTI stress in p-MOS Transistor for High Speed (고속용 p-MOS 트랜지스터에서 NBTI 스트레스에 의한 특성 인자의 열화 분석)

  • Lee, Yong-Jae;Lee, Jong-Hyung;Han, Dae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.80-86
    • /
    • 2010
  • This work has been measured and analyzed the device degradation of NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOS transistors of gate channel length 0.13 [${\mu}m$]. From the relation between the variation of threshold voltage and subthreshold slop by NBTI stress, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. As a results, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress parameters of nanoscale CMOS communication circuit design.

Design of an Analog Array Using Floating Gate MOSFETs (부유게이트를 이용한 아날로그 어레이 설계)

  • 채용웅;박재희
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.30-37
    • /
    • 1998
  • An analog array with a 1.2 $\mu\textrm{m}$ double poly floating gate transistor has been developed with a standard CMOS fabrication process. The programming of each cell by means of an efficient control circuit eliminates the unnecessary erasing operation which has been widely used in conventional analog memories. It is seen that the path of the signal for both the programming and the reading is almost exactly the same since just one comparator supports both operations. It helps to eliminate the effects of the amplifier input-offset voltage problem on the output voltage for the read operation. In the array, there is no pass transistor isolating a cell of interest from the adjacent cells in the array. Instead of the extra transistors, one extra bias voltage, Vmid, is employed. The experimental results from the memory shows that the resolution of the memory is equivalent to the information content of at least six digital cells. Programming/erasing of each cell is achieved with no detectable disturbance of adjacent cells. Finally, the unique shape of the injector structure in a EEPROM is adopted as a cell of analog array. It reduces the programming voltage below the transistor breakdown voltage without any special fabrication process.

  • PDF

Etching characteristic of SBT thin film by using Ar/$CHF_3$ Plasma (Ar/$CHF_3$ 플라즈마를 이용한 SBT 박막에 대한 식각특성 연구)

  • 서정우;이원재;유병곤;장의구;김창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.41-43
    • /
    • 1999
  • Among the feffoelectric thin films that have been widely investigated for ferroelectric random access memory (FRAM) applications, SrBi$_2$Ta$_2$$O_{9}$ thin film is appropriate to memory capacitor materials for its excellent fatigue endurance. However, very few studies on etch properties of SBT thin film have been reported although dry etching is an area that demands a great deal of attention in the very large scale integrations. In this study, the a SrBi$_2$Ta$_2$$O_{9}$ thin films were etched by using magnetically enhanced inductively coupled Ar/CHF$_3$ plasma. Etch properties, such as etch rate, selectivity, and etched profile, were measured according to gas mixing ratio of CHF$_3$(Ar$_{7}$+CHF$_3$) and the other process conditions were fixed at RF power of 600 W, dc bias voltage of 150 V, chamber pressure of 10 mTorr. Maximum etch rate of SBT thin films was 1750 A77in, under CHF$_3$(Ar+CHF$_3$) of 0.1. The selectivities of SBT to Pt and PR were 1.35 and 0.94 respectively. The chemical reaction of etched surface were investigated by X-ray photoelectron spectroscopy (XPS) analysis. The Sr and Ta atoms of SBT film react with fluorine and then Sr-F and Ta-F were removed by the physical sputtering of Ar ion. The surface of etched SBT film with CHF$_3$(Ar+CHF$_3$) of 0.1 was analyzed by secondary ion mass spectrometer (SIMS). Scanning electron microscopy (SEM) was used for examination of etched profile of SBT film under CHF$_3$(Ar+CHF$_3$) of 0.1 was about 85˚.85˚.˚.

  • PDF

Frequency Dependent Properties of Tris(8-Hydroxyquinoline) Aluminum Thin Films

  • Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.70-74
    • /
    • 2001
  • Admittance or impedance spectroscopy is one of the powerful tools to study dielectric relaxation and loss processes in organic and inorganic materials. In this study, the frequency dependent properties of an indium tin oxide/tris(8-hydroxyquinoline) aluminum($Alq_3$)/aluminum structure have been studied. The conductance of the $Alq_3$ film increases with the DC applied voltage up to 4V and decreases above 4V in the low frequency region. This indicates that the resistance of the device decreases with the applied bias due to the carrier injection enhancement, thereafter the injected carriers form the space charge and the additional injection of carriers is prevented. The Cole-Cole plot of the admittance takes a one-semicircle shape, which means that the device can be modeled as a parallel resistor-capacitor network. The resistance and capacitance were estimated as 8.62k${\Omega}$ and 2.7nF, respectively, at 3V in the low frequency region. The dielectric constant ( ${\epsilon}'$ ) of the $Alq_3$ film is independent of the frequency in the low frequency region below 100kHz, while the frequency dependency was observed at above 100kHz. The dielectric loss factor ( ${\epsilon}"$ ) of the $Alq_3$ film shows the dielectric dispersion below 100kHz and dielectric absorption in higher frequency domain. The dispersion is thought to be related to the hopping process of the carriers. The ${\epsilon}"$ is proportional to the reciprocal of the frequency. The dielectric relaxation time was extracted to about 0.318${\mu}s$ from the dielectric absorption spectrum.

  • PDF

Surface Reactions on the Bi4-xLaxTiO3O12 Thin Films Etched in Inductively Coupled CF4/Ar Plasma (유도결합 CF4/Ar 플라즈마에 의한 Bi4-xLaxTiO3O12 박막의 식각 표면 반응)

  • 김동표;김경태;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.378-384
    • /
    • 2003
  • Etching species in CF$_4$/Ar plasma and the behavior of etching rate of Bi$_4$-$_{x}$L$_{x}$rTi$_3$O$_2$ (BLT) films were investigated in inductively coupled plasma (ICP) reactor in terms of etch parameters. The etching rate as functions of CF$_4$ contents showed the maximum 803 $\AA$/min at 20% CF$_4$ addition in CF$_4$/Ar plasma. The increase of RF power and DC bias voltage caused to an increase of etch rate. The variation of relative volume densities for F and he atoms were measured with the optical emission spectroscopy (OES). The chemical states of BLT were investigated with using X-ray photoelectron spectroscopy (XPS). XPS narrow scan analysis shows that La-fluorides remained on the etched surface. The presence of maximum etch rate at CF$_4$(20%)/Ar(80%) may be explained by the concurrence of two etching mechanisms such as physical sputtering and chemical reaction. The roles of he ion bombardment include destruction of metal (Bi, La, Ti)-O bonds as well as assistant for chemical reaction of metals with fluorine atoms.oms.

The study of plasma source ion implantation process for ultra shallow junctions (Ulra shallow Junctions을 위한 플라즈마 이온주입 공정 연구)

  • Lee, S.W.;Jeong, J.Y.;Park, C.S.;Hwang, I.W.;Kim, J.H.;Ji, J.Y.;Choi, J.Y.;Lee, Y.J.;Han, S.H.;Kim, K.M.;Lee, W.J.;Rha, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.111-111
    • /
    • 2007
  • Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.

  • PDF

Control of ZnO Sputtering Growth by Changing Substrate Bias Voltage (ZnO 스퍼터링에서 기판전압의 변화에 의한 성장 조절)

  • Meng, Jun;Choi, Jaewon;Jeon, Wonjin;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.94-97
    • /
    • 2017
  • Amorphous Si has been used for data processing circuits in flat panel displays. However, low mobility of the amorphous Si is a limiting factor for the data transmission speed. Metal oxides such as ZnO have been studied to replace the amorphous Si. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. When ZnO is grown by sputtering with $O_2$ as an oxidizer, there can be many ion species arising from $O_2$ decomposition. $O^+$, $O_2{^+}$, and $O^-$ ions are expected to be the most abundant species, and it is not clear which one contributes to the ZnO growth. We applied alternating substrate voltage (0 V and -70 V) during sputtering growth. We studied changes in transistor characteristics induced by the voltage switching. We also compared ZnO grown by dc and rf sputtering. ZnO film was grown at $450^{\circ}C$ substrate temperature. ZnO thin-film transistor grown with these methods showed $7.5cm^2/Vsec$ mobility, $10^6$ on-off ratio, and -2 V threshold voltage.

  • PDF

High Power W-band Power Amplifier using GaN/Si-based 60nm process (GaN/Si 기반 60nm 공정을 이용한 고출력 W대역 전력증폭기)

  • Hwang, Ji-Hye;Kim, Ki-Jin;Kim, Wan-Sik;Han, Jae-Sub;Kim, Min-Gi;Kang, Bong-Mo;Kim, Ki-chul;Choi, Jeung-Won;Park, Ju-man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.67-72
    • /
    • 2022
  • This study presents the design of power amplifier (PA) in 60 nm GaN/Si HEMT technology. A customized transistor model enables the designing circuits operating at W-band. The all matching network of the PA was composed of equivalent transformer circuit to reduce matching loss. And then, equivalent transformer is several advantages without any additional inductive devices so that a wideband power characteristic can be achieved. The designed die area is 3900 ㎛ × 2300 ㎛. The designed results at center frequency achieved the small signal gain of 15.9 dB, the saturated output power (Psat) of 29.9 dBm, and the power added efficiency (PAE) of 24.2% at the supply voltage of 12 V.