• Title/Summary/Keyword: DC-based technology

Search Result 682, Processing Time 0.027 seconds

Optimization of Bidirectional DC/DC Converter for Electric Vehicles Based On Driving Cycle

  • Yutao, Luo;Feng, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1934-1944
    • /
    • 2017
  • As a key component of high-voltage power conversion system for electric vehicles (EVs), bidirectional DC/DC (Bi-DC/DC) is required to have high efficiency and light weight. Conventional design methods optimize the Bi-DC/DC at the maximum power dissipation point (MPDP). For EVs application, the work condition of the Bi-DC/DC is not strict as the MPDP, where the design method using MPDP may not be optimal during travel of EVs. This paper optimizes the Bi-DC/DC converter targeting efficiency and weight based on the driving cycle. By analyzing the two-phase interleaved Bi-DC/DC for hybrid energy storage systems (HESS) of EVs, its power dissipation is calculated, and an efficiency model is derived. On this basis, weight models of capacitor, inductor and heat sink are built, as well as a dynamic temperature model of heat sink. Based on these models, a method using New European Driving Cycle (NEDC) for optimal design of Bi-DC/DC which simultaneously considered efficiency and weight is proposed. The simulation result shows that compare with conventional optimization methods revealed that the optimization approach based on driving cycle allowed significant weight reduction while meeting the efficiency requirements.

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.

Switched Capacitor Based High Gain DC-DC Converter Topology for Multiple Voltage Conversion Ratios with Reduced Output Impedance

  • Priyadarshi, Anurag;Kar, Pratik Kumar;Karanki, Srinivas Bhaskar
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.676-690
    • /
    • 2019
  • This paper presents a switched capacitor (SC) based bidirectional dc-dc converter topology for high voltage gain applications. The proposed converter is able to operate with multiple integral voltage conversion ratios based on user input. The architecture of a user-friendly, inductor-less multi-voltage-gain bidirectional dc-dc converter is proposed in this study. The inductor-less or magnetic-less design of the proposed converter makes it effective in higher temperature applications. Furthermore, the proposed converter has a reduced component count and lower voltage stress across its switches and capacitors when compared to existing SC converters. An output impedance analysis of the proposed converter is presented and compared with popular existing SC converters. The proposed converter is simulated in the OrCAD PSpice environment and the obtained results are presented. A 200 W hardware prototype of the proposed SC converter has been developed. Experimental results are presented to validate the efficacy of the proposed converter.

Pulse Multiplication in Autotransformer Based AC-DC Converters using a Zigzag Connection

  • Singh, Bhim;Gairola, Sanjay
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • This paper deals with pulse multiplication in zigzag connected autotransformer based 12-pulse AC-DC converters feeding vector controlled induction motor drives (VCIMD) for improving the power quality at the point of common coupling (PCC) without using a Zero-Sequence-Blocking-Transformer (ZSBT). The proposed 24-pulse AC-DC converter is based on the principle of DC ripple re-injection technique for pulse multiplication and harmonic mitigation. The design of the autotransformer is carried out for the proposed AC-DC converter and the effect of load variation on VCIMD is also studied to demonstrate the effectiveness of the proposed AC-DC converter. Test results from a laboratory developed prototype, along with simulated results, are presented to validate the design and model of the proposed 24-pulse AC-DC converter.

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Single-Phase Inverter Based on Class E dc/dc Converter for Automotive application

  • Boonyaroonate, Itsda;Mori, Shinsaku
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1027-1029
    • /
    • 2002
  • In this paper, we present the circuit topology and control scheme of single-phase dc/ac inverter based on class E dc/dc converter for automotive application. The proposed inverter consists of class E series resonant inverter and class E low dv/dt PWM synchronous rectifier with bi-directional switch.

  • PDF

Optimal Power Flow of DC-Grid Based on Improved PSO Algorithm

  • Liu, Xianzheng;Wang, Xingcheng;Wen, Jialiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1586-1592
    • /
    • 2017
  • Voltage sourced converter (VSC) based direct-current (DC) grid has the ability to control power flow flexibly and securely, thus it has become one of the most valid approaches in aspect of large-scale renewable power generation, oceanic island power supply and new urban grid construction. To solve the optimal power flow (OPF) problem in DC grid, an adaptive particle swarm optimization (PSO) algorithm based on fuzzy control theory is proposed in this paper, and the optimal operation considering both power loss and voltage quality is realized. Firstly, the fuzzy membership curve is used to transform two objectives into one, the fitness value of latest step is introduced as input of fuzzy controller to adjust the controlling parameters of PSO dynamically. The proposed strategy was applied in solving the power flow issue in six terminals DC grid model, and corresponding results are presented to verify the effectiveness and feasibility of proposed algorithm.

A New Orthogonal Signal Generator with DC Offset Rejection for Single-Phase Phase Locked Loops

  • Huang, Xiaojiang;Dong, Lei;Xiao, Furong;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.310-318
    • /
    • 2016
  • This paper presents a new orthogonal signals generator (OSG) with DC Offset rejection for implementing a phase locked loop (PLL) in single-phase grid-connected power systems. An adaptive filter (AF) based on the least mean square (LMS) algorithm is used to constitute the OSG in this study. The DC offset in the measured grid voltage signal can be significantly rejected in the developed OSG technique. This generates two pure orthogonal signals that are free from the DC offset. As a result, the DC offset rejection performance of the presented single-phase phase locked loop (SPLL) can be enhanced. A mathematical model of the developed OSG and the principle of the adaptive filter based SPLL (AF-SPLL) are presented in detail. Finally, simulation and experimental results demonstrate the feasibility of the proposed AF-SPLL.

Application of a Robust Fuzzy Sliding Mode Controller Synthesis on a Buck-Boost DC-DC Converter Power Supply for an Electric Vehicle Propulsion System

  • Allaoua, Boumediene;Laoufi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The development of electric vehicle power electronics system control, composed of DC-AC inverters and DC-DC converters, attract much research interest in the modern industry. A DC-AC inverter supplies the high-power motor torques of the propulsion system and utility loads of electric vehicles, whereas a DC-DC converter supplies the conventional low-power and low-voltage loads. However, the need for high-power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. The nonlinear control of power converters is an active research area in the field of power electronics. This paper focuses on the use of the fuzzy sliding mode strategy as a control strategy for buck-boost DC-DC converter power supplies in electric vehicles. The proposed fuzzy controller specifies changes in control signals based on the surface and knowledge on surface changes to satisfy the sliding mode stability and attraction conditions. The performance of the proposed fuzzy sliding controller is compared to that of the classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law, which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variations in load resistance and input voltage in the studied converter.

Reduced Rating T-Connected Autotransformer Based Thirty-Pulse AC-DC Converter for Vector Controlled Induction Motor Drives

  • Singh Bhim;Bhuvaneswari G.;Garg Vipin
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.214-225
    • /
    • 2006
  • The design and performance analysis of a reduced rating autotransformer based thirty-pulse AC-DC converter is carried out for feeding a vector controlled induction motor drive (VCIMD). The configuration of the proposed autotransformer consists of only two single phase transformers, with their windings connected in a T-shape, resulting in simplicity in design, manufacturing and in a reduction in magnetics rating. The design procedure of the autotransformer along with the newly designed interphase transformer is presented. The proposed configuration has flexibility in varying the transformer output voltage ratios as required. The design of the autotransformer can be modified for retrofit applications, where presently a 6-pulse diode bridge rectifier is used. The proposed thirty-pulse AC-DC converter is capable of suppressing less than $29^{th}$ harmonics in the supply current. The power factor is also improved to near unity in the wide operating range of the drive. A comparison of different power quality indices at AC mains and DC bus is demonstrated in a conventional 6-pulse AC-DC converter and the proposed AC-DC converter feeding a VCIMD. A laboratory prototype of the proposed autotransformer based 30-pulse AC-DC converter was developed with test results validating the proposed design and system.