• 제목/요약/키워드: DC-DC Power Converters

검색결과 731건 처리시간 0.034초

전압모드 PWM DC/DC 전력 컨버터 설계연구 (A Study on the Design of Voltage Mode PWM DC/DC Power Converter)

  • 노영환
    • 한국철도학회논문집
    • /
    • 제14권5호
    • /
    • pp.411-415
    • /
    • 2011
  • DC/DC컨버터는 임의의 직류전원을 부하가 요구하는 형태의 직류전원으로 변환시키는 전력변환기이다. 전압모드 DC/DC 컨버터는 주기적으로 입력측에서 출력측으로 전달되는 에너지를 제어하는 기능을 수행하기 위해 MOSFET(산화물-반도체 전계 효과 트랜지스터), 인덕터, PWM 제어기(오실레이터, 연산증폭기, 비교기로 구성)를 이용한다. 본 논문에서 PWM(펄스폭 변조) 모듈과 스위칭모드로 제어하는 기본적인 승압과 강압컨버터를 연구하고, 전기적 특성을 SPICE로 시뮬레이션을 수행하며, 전력의 효율을 각 소자의 변화와 사양에 따라 분석하는데 있다.

AC-DC 변환을 위한 PWM Dual 컨버터의 제어 (The Control of PWM Dual Converters for AC-DC Conversion)

  • 정연택;김원철;이사영;조영철;박현준;김길동;이미영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.314-317
    • /
    • 1997
  • The purpose of this study is developing a converter which is able to convert a 300[KW] power, and is a DC power supply output a 1500[V] DC voltage for inverter driving. The power converter is driven by two converter serisely and keep a high power factor of power source. This system is haven all the characteristic of voltage source converter by having a processing ability of regenerating power. The two converters controls a PWM modulation and output voltage using a only one 16 bit DSP processor.

  • PDF

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

절연형 풀브리지 DC-DC 컨버터에서의 변압기 포화에 관한 연구 (Study on Transformer Saturation in Isolated Full-Bridge DC-DC Converters)

  • 김정훈;차헌녕
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.261-268
    • /
    • 2020
  • Transformer saturation in full bridge (FB) isolated DC-DC converters is caused by uneven switching speeds and voltage drops in semiconductor devices and mismatched gate signals. In order to prevent transformer saturation, most popular and widely used approach is to insert a capacitor in series with the transformer windings. This study conducts extensive analyses on transformer saturation and the effect of DC blocking capacitors when they are placed in the primary or secondary windings of a transformer. The effect of the DC blocking capacitors is verified in voltage-fed and current-fed FB converters.

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

Identification of DC-Link Capacitance for Single-Phase AC/DC PWM Converters

  • Pu, Xing-Si;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.270-276
    • /
    • 2010
  • In this paper, a capacitance estimation scheme for DC-link capacitors for single-phase AC/DC PWM converters is proposed. Under the no-load condition, a controlled AC current (30[Hz]) is injected into the input side, which then causes AC voltage ripples at the DC output side. Or, a controlled AC voltage can be directly injected into the DC output side. By extracting the AC voltage/current and power components on the DC output side using digital filters, the capacitance value can be calculated, where the recursive least squares (RLS) algorithm is used. The proposed methods can be simply implemented with software only and additional hardware is not required. From the experiment results, a high accuracy estimation of capacitances less than 0.85% has been obtained.

Modified 멀티레벨 컨버터 기반 펄스모드 동작 직류전원장치 (A Pulsed Mode Operating DC Power Supply Based on Modified Multilevel Converter)

  • 안종수;노의철;김인동;김흥근;전태원
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.264-268
    • /
    • 2003
  • This paper describes a high voltage high power DC power supply which has the ability of pulsed mode operation. The power supply Is constructed with several series connected power converters based on modified multilevel converters. The modified multilevel converters are suitable for the protection of frequent output short-circuit. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the do voltage because the dc output capacitors keep undischarged state. Analysis, simulations, and experiments are carried out to Investigate the operation and usefulness of the proposed scheme.

  • PDF

Minimum Time Regulation of DC-DC Converters in Damping Mode with an Optimal Adjusted Sliding Mode Controller

  • Jafarian, Mohammad Javad;Nazarzadeh, Jalal
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.769-777
    • /
    • 2012
  • In this paper, a new development in the time optimal control theory in sliding mode control systems for multi-quadrant buck converters with a variable load is presented. In general, the closed-loop time optimal control system is applied to multi-quadrant buck converters for output regulation, so that an optimal switching surface is obtained. Moreover, an adjusted optimal sliding mode controller is suggested which adjusts the controller parameters to give an optimal switching surface. In addition, a description of the transient response of the closed-loop system is proposed and used to damp any output or input disturbances in minimum time. Numerical simulations and experimental results are employed to demonstrate that the output regulation time and transient performances of dc/dc converters using the proposed technique are improved effectively when compared to the classical sliding mode control method.

Reduced Order Identification and Stability Analysis of DC-DC Converters

  • Ali, Husan;Zheng, Xiancheng;Wu, Xiaohua;Zaman, Haider;Khan, Shahbaz
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.453-463
    • /
    • 2017
  • This paper discusses the measurement of frequency response functions for various dc-dc converters. The frequency domain identification procedure is applied to the measured frequency responses. The identified transfer functions are primarily used in developing behavioral models for dc-dc converters. Distributed power systems are based upon such converters in cascade, parallel and several other configurations. The system level analysis of a complete system becomes complex when the identified transfer functions are of high order. Therefore, a certain technique needs to be applied for order reduction of the identified transfer functions. During the process of order reduction, it has to be ensured that the system retains the dynamics of the full order system. The technique used here is based on the Hankel singular values of a system. A systematic procedure is given to retain the maximum energy states for the reduced order model. A dynamic analysis is performed for behavioral models based on full and reduced order frequency responses. The close agreement of results validates the effectiveness of the model order reduction. Stability is the key design objective for any system designer. Therefore, the measured frequency responses at the interface of the source and load are also used to predict stability of the system.

전기전동차 급속충전기 고효율화를 위한 새로운 DC-DC 컨버터 토폴로지 (A New DC-DC Converter Topology For High-Efficiency Electric Vehicle Rapid Chargers)

  • 김진학;이우석;최승원;이준영;이일운
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.182-189
    • /
    • 2018
  • LLC resonant converters or phase-shift full-bridge converters have been widely used as DC - DC converters for rapid charging of electric vehicles (EVs). However, these converters present critical disadvantages, including a large circulating current, which can hinder efficiency and miniaturization in EV battery charger applications. In this paper, a new DC - DC converter topology is proposed for EV rapid chargers. The proposed converter can operate at high frequency despite a high rated power capacity of over 20kW, and the problem of circulating current can be minimized during the entire battery charging time. Owing to these advantages, the proposed converter can achieve a high conversion efficiency of over 97% for EV rapid charger applications. The performance of the proposed converter is verified with 20kW prototypes in this study.