• Title/Summary/Keyword: DC-DC 변환회로

Search Result 212, Processing Time 0.026 seconds

A 100MHz DC-DC Converter Using Integrated Inductor and Capacitor as a Power Module for SoC Power Management (SoC 전원 관리를 위한 인덕터와 커패시터 내장형 100MHz DC-DC 부스트 변환기)

  • Lee, Min-Woo;Kim, Hyoung-Joong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.31-40
    • /
    • 2009
  • This paper presents a design of a high performance DC-DC boost converter as a power module for SOC designs. It applied to this chip that reduced inductor and capacitor for integrating on a chip, and it operates with a switching frequency of 100MHz. It has reliability and stability in high switching frequency. The controller of DC-DC boost converter is designed by voltage-mode control method and compensated properly. The designed DC-DC converter is fabricated with the 0.18${\mu}m$ standard CMOS technology with a thick-gate oxide option. The overall die size is 8.14$mm^2$, and controller size is 1.15$mm^2$. The converter has the maximum efficiency over 76% for the output voltage of 4V and load current larger 300mA. The load regulation is 0.012% (0.5mV) for the load current change of 100mA.

A Sensing Scheme Utilizing Current-Mode Comparison for On-Chip DC-DC Converter (온칩 DC-DC 변환기를 위한 전류 비교 방식의 센서)

  • Kim, Hyung-Il;Song, Ha-Sun;Kim, Bum-Soo;Kim, Dae-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.86-90
    • /
    • 2007
  • An efficient sensing scheme applicable to DC-DC converters is proposed. The output voltage of the DC-DC converter is fed back and converted to a current signal at the input terminal of the sensor to decide if it is in the tolerable range. The comparison is accomplished by a current push-pull action. With the embedded reference current in the sensor realized from the reference voltage. The advantages of the scheme lie in the fairly accurate and efficient implementation in terms of power consumption and chip size overhead compared with conventional voltage-mode schemes as the major parameter in converting voltage to current is determined by (W/L) aspect ratio of the core transistors. In this paper, a DC-DC converter of 5V output from battery range of 2.2V${\sim}$3.6V adopting the proposed sensing scheme is implemented in a 0.35um CMOS process to prove the validity of the scheme.

A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control (MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This paper presents a CMOS interface circuit for vibration energy harvesting with MPPT (Maximum Power Point Tracking). In the proposed system a PMU (Power Management Unit) is employed at the output of a DC-DC boost converter to provide a regulated output with low-cost and simple architecture. In addition an MPPT controller using FOC (Fractional Open Circuit) technique is designed to harvest maximum power from vibration devices and increase efficiency of overall system. The AC signal from vibration devices is converted into a DC signal by an AC-DC converter, and then boosted through the DC-DC boost converter. The boosted signal is converted into a duty-cycled and regulated signal and delivered to loads by the PMU. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a DC-DC boost converter architecture using a schottky diode is employed for a simple control circuitry. The proposed circuit has been designed in a 0.35um CMOS process, and the designed chip occupies $915{\mu}m{\times}895{\mu}m$. Simulation results shows that the maximum power efficiency of the entire system is 83.4%.

Design of a High-Efficiency CMOS DC-DC Boost Converter Using a Current-Sensing Feedback Method (전류 감지 Feedback 기법을 사용한 고효율 CMOS DC-DC Boost 변환기의 설계)

  • Jung Kyung-Soo;Yang Hui-Kwan;Cha Sang-Hyun;Lim Jin-Up;Choi Joong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.23-30
    • /
    • 2006
  • This paper presents a design of a high-efficiency CMOS DC-DC boost converter using a current-sensing feedback method. High-precision current-sensing circuity is incorporated in order to sense the current flowing in the inductor, which determines the switching scheme of the pulse-width modulation. The external components or large chip area for the frequency compensation can be avoided while maintaining the stable operations of the converter. Various input/output voltage levels can be available through the external resistor strings. The designed DC-DC converter is fabricated in a 0.18-um CMOS technology with a thick-gate oxide option. The converter shows the maximum efficiency over 90% for the output voltage of 3.3V and load current larger than 200mA. The load regulation is 1.15% for the load current change of 100mA.

Research of a high efficiency isolated bidirectional AC-DC converter for DC distribution system (DC 배전 시스템을 위한 고효율 절연형 양방향 AC-DC 컨버터 개발에 대한 연구)

  • Kim, Ho-Sung;Jung, Jee-Hoon;Ryu, Myung-Hyo;Kim, Jong-Hyun;Baek, Ju-Won
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.369-370
    • /
    • 2012
  • 본 논문은 380V DC 배전 시스템의 양방향 전력 흐름 제어와 전력 변환 효율 개선을 위한 고효율 절연형 양방향 AC-DC 컨버터를 제안한다. 제안하는 회로는 비절연형 양방향 AC-DC 정류기와 절연형 양방향 CLLC 공진형 컨버터로 구성된다. AC-DC 정류기의 전력 변환 효율 높이기 위해서 단극성 SPWM 방식을 이용하여 SiC 다이오드와 Anti-parallel 다이오드가 없는 IGBT와 MOSFET를 이용하여 전력 변환 효율을 증가 시켰다. 절연형 양방향 DC-DC 컨버터의 효율을 높이기 위해서 전 범위 ZVS 동작이 가능한 양방향 CLLC 공진형 컨버터를 이용하였다. 5kW 시제품을 통하여 제안하는 절연형 양방향 AC-DC 컨버터의 성능을 검증하였다.

  • PDF

Thermoelectric Energy Harvesting Circuit Using DC-DC Boost Converter (DC-DC 부스트 변환기를 이용한 열전에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.284-293
    • /
    • 2013
  • This paper describes a DC-DC boost converter for thermoelectric energy harvesting. The designed converter boosts the VDD through a start-up block from a low-output voltage of a thermoelectric device and the boosted VDD is used to operate the internal control block. When the VDD reaches a predefined value, a detector circuit makes the start-up block turn off to minimize current consumption. The final boosted VOUT is achieved by alternately operating the DC-DC converter for VDD and the main DC-DC converter for VOUT according to the comparator outputs. Simulation results shows that the designed converter generates 2.65V from an input voltage of 200mV and its maximum power efficiency is 63%. The area of the chip designed using a 0.35um CMOS process is $1.3mm{\times}0.7mm$ including pads.

Design and Making of PWM Control-based AC-DC Converter with Full-Bridge Rectifier (전파 정류기를 가지는 PWM 제어 기반의 AC-DC 컨버터 설계 및 제작)

  • Bum-Soo Choi;Sang-Hyeon Kim;Dong-Ki Woo;Min-Ho Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.617-624
    • /
    • 2023
  • Recently, miniaturization and low power consumption of electronic products and improved efficiency and power factor improvement have become a matter of great interest. In this paper, an AC-DC converter based on PWM control was designed and made. The AC-DC converter is designed with a structure in which one rectifier circuit and one output voltage control circuit are connected in series. The rectifier circuit is a diode-based single phase full-wave current circuit and the output voltage control circuit is a DC-DC conversion circuit based on PWM control. Arduino was used as the main control device for PWM control, and LCD was configured at the output stage so that the control result could be checked. The error between the output voltage displayed on the oscilloscope and LCD and the target output voltage was confirmed through repeated experiments with the test circuit, and the validity of the proposed design methodology was confirmed by showing an error rate of about 5% based on the oscilloscope measurement value.

압전 트랜스포머를 이용한 전력변환기 회로

  • 김희준
    • 전기의세계
    • /
    • v.45 no.3
    • /
    • pp.16-22
    • /
    • 1996
  • 압전 트랜스포머의 전력 변환기회로에의 응용은 크게 두가지 방향으로 구분할 수 있다. 고압용 인버터와 저압용 DC-DC 컨버터에의 응용이다. 압전 트랜스포커를 이용한 고압용 인버터는 이미 실용화 단계에 와 있어서 시제품이 생산되고 있으며 저압용 DC-DC 컨버터에의 응용에 있어서도 MHz대의 스위칭 주파수를 갖는 고주파용 컨버터가 활발하게 연구되고 있다. 본고에서는 우선 압전 트랜스포머의 특징에 대하여 설명하고, 고압용 인버터에의 응용, 저압용 DC-DC 컨버터에의 응용, 결론의 순서로 해설하고자 한다.

  • PDF

Dynamic Voltage Scaling (DVS) Considering the DC-DC Converter in Portable Embedded Systems (휴대용 내장형 시스템에서 DC-DC 변환기를 고려한 동적 전압 조절 (DVS) 기법)

  • Choi, Yong-Seok;Chang, Nae-Hyuck;Kim, Tae-Whan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.95-103
    • /
    • 2007
  • Dynamic voltage scaling (DVS) is a well-known and effective power management technique. While there has been research on slack distribution, voltage allocation and other aspects of DVS, its effects on non-voltage-scalable devices has hardly been considered. A DC-DC converter plays an important role in voltage generation and regulation in most embedded systems, and is an essential component in DVS-enabled systems that scale supply voltage dynamically. We introduce a power consumption model of DC-DC converters and analyze the energy consumption of the system including the DC-DC converter. We propose an energy-optimal off-line DVS scheduling algorithm for systems with DC-DC converters, and show experimentally that our algorithm outperforms existing DVS algorithms in terms of energy consumption.

Design of the High Efficiency DC-DC Converter Using Low Power Buffer and On-chip (저 전력 버퍼 회로를 이용한 무선 모바일 용 스텝다운 DC-DC 변환기)

  • Cho, Dae-Woong;Kim, Soek-Jin;Park, Seung-Chan;Lim, Dong-Kyun;Jang, Kyung-Oun;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.1-7
    • /
    • 2008
  • This paper proposes 3.3V input and 1.8V output voltage mode step-down DC-DC buck converter for wireless mobile system which is designed in a standard 0.35$\mu$m CMOS process. The proposed capacitor multiplier method can minimize error amplifier compensation block size by 30%. It allows the compensation block of DC-DC converter be easily integrated on a chip. Also, we improve efficiency to 3% using low power buffer. Measurement result shows that the circuit has less than 1.17% output ripple voltage and maximum 83.9% power efficiency.