DOI QR코드

DOI QR Code

Thermoelectric Energy Harvesting Circuit Using DC-DC Boost Converter

DC-DC 부스트 변환기를 이용한 열전에너지 하베스팅 회로

  • Yoon, Eun-Jung (Dept. of Electronics Engineering, Incheon National University) ;
  • Park, Jong-Tae (Dept. of Electronics Engineering, Incheon National University) ;
  • Yu, Chong-Gun (Dept. of Electronics Engineering, Incheon National University)
  • Received : 2013.07.30
  • Accepted : 2013.09.04
  • Published : 2013.09.30

Abstract

This paper describes a DC-DC boost converter for thermoelectric energy harvesting. The designed converter boosts the VDD through a start-up block from a low-output voltage of a thermoelectric device and the boosted VDD is used to operate the internal control block. When the VDD reaches a predefined value, a detector circuit makes the start-up block turn off to minimize current consumption. The final boosted VOUT is achieved by alternately operating the DC-DC converter for VDD and the main DC-DC converter for VOUT according to the comparator outputs. Simulation results shows that the designed converter generates 2.65V from an input voltage of 200mV and its maximum power efficiency is 63%. The area of the chip designed using a 0.35um CMOS process is $1.3mm{\times}0.7mm$ including pads.

본 논문에서는 열전에너지 하베스팅을 위한 저전압 DC-DC 부스트 변환기를 설계하였다. 설계된 변환기는 열전소자의 작은 출력전압으로부터 시동회로를 통해 일정 전압까지 승압된 VDD를 얻으며, 이는 내부 컨트롤 블록을 동작시키는데 사용된다. VDD가 원하는 전압 값에 도달하면 전압감지기가 이를 감지하고 시동회로에 공급되는 전류를 차단하여 전류소모를 최소화한다. 이후 비교기의 출력에 따라 VDD를 위한 DC-DC 변환기와 최종출력 VOUT을 위한 DC-DC 변환기를 번갈아가며 동작시켜서 최종적으로 승압된 VOUT을 얻는다. 모의실험 결과, 설계한 변환기는 200mV의 입력으로부터 2.65V의 VOUT을 출력하며, 최대 전력효율은 63%이다. $0.35{\mu}m$ CMOS 공정을 사용하여 설계한 칩의 크기는 PAD를 포함하여 $1.3mm{\times}0.7mm$이다.

Keywords

References

  1. D. Dondi, A. Bertacchini, D. Brunelli, L. Larcher, and L. Benini, "Modeling and Optimization of a Solar Energy Harvester System for Self-Powered Wireless Sensor Networks", IEEE Trans. on Industrial Electronics, vol. 55, no. 7, pp. 2759-2766, 2008. https://doi.org/10.1109/TIE.2008.924449
  2. H. Shao, C. Tsui, and W. Ki, "The Design of a Micro Power Management System for Applications Using Photovoltaic Cells With the Maximum Output Power Control," IEEE Trans. on VLSI Systems, vol. 17, no. 8, pp. 1138-1142, 2009. https://doi.org/10.1109/TVLSI.2008.2001083
  3. N. Khosropour, F. Krummenacher, and M. Kayal, "Fully integrated ultra-low power management system for micro-power solar energy harvesting applications," Electronics Letters, Vol. 48, No. 6, pp. 338-339, 2012. https://doi.org/10.1049/el.2012.0315
  4. J. Colomer-Farrarons, P. Miribel-Catala, A. Saiz-Vela, M. Puig-Vidal, and. J. Samitier, "Power-Conditioning Circuitry for a Self-Powered System Based on Micro PZT Generators in a 0.13${\mu}m$ Low-Voltage Low-Power Technology," IEEE Trans. on Industrial Electronics, vol. 55, no. 9, pp. 3249-3257, September 2008. https://doi.org/10.1109/TIE.2008.927973
  5. C. Lu, C.-Y. Tsui, and W.-H. Ki, "Vibration Energy Scavenging System With Maximum Power Tracking for Micropower Applications," IEEE Trans. on VLSI Systems, Vol. 19, No. 11, pp. 2109-2119, 2011. https://doi.org/10.1109/TVLSI.2010.2069574
  6. N. Kong, and D. S. Ha, "Low-Power Design of a Self-powered Piezoelectric Energy Harvesting System With Maximum Power Point Tracking," IEEE Trans. on Power Electronics, Vol. 27, No. 5, pp. 2298-2308, 2012. https://doi.org/10.1109/TPEL.2011.2172960
  7. A. Richelli, L. Colalongo, S. Tonoli, and Z. M. Kovacs-Vajna, "A 0.2-1.2V DC/DC Boost Converter for Power Harvesting Applications," IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1541-1546, June. 2009. https://doi.org/10.1109/TPEL.2009.2013224
  8. I. Doms, et. al., "Capacitive Power Management Circuit for Micropower Thermoelectric Generators With a 1.4uA Controller", IEEE JSSC, vol. 44 , no. 10, pp. 2824-2833, 2009.
  9. E. Carlson, K. Stunz and B. Otis, "20mV input Boost Converter for Thermoelectric Energy Harvesting," IEEE J. Solid-State Circuits, vol. 45, pp. 741-750, Apr., 2010. https://doi.org/10.1109/JSSC.2010.2042251
  10. Y. K. Ramadass and A. P. Chandrakasan, "A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage", IEEE JSSC, vol. 46, no. 1, pp.333-341, 2011.
  11. P. H. Chen, et. al., "A 95mV-Startup Step-Up Converter with $V_{TH}$-Tuned Oscillator by Fixed-Charge Programming and Capacitor Pass-On Scheme", IEEE International Solid-State Circuits Conference, pp. 216-217, Feb. 2011.
  12. H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, "Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage", IEEE Solid-State Circuits Society, pp 246-255, 2008.
  13. Tellurex Thermoelectric Energy Harvester-G1-1.0-127-1.27, Tellurex [Online]. Available: http://www.tellurex.com
  14. T. Y. Man, P. K. T. Mok, and M. J. Chan, "A 0.9V Input Discontinuous Conduction Mode Boost Converter With CMOS Control Rectifier," IEEE Journal of Solid-State Circuits, vol. 43, pp. 2036-2046, Sept. 2008. https://doi.org/10.1109/JSSC.2008.2001933

Cited by

  1. DC-DC Boost Converter using Offset-Controlled Zero Current Sensor for Low Loss Thermoelectric Energy Harvesting Circuit vol.20, pp.4, 2016, https://doi.org/10.7471/ikeee.2016.20.4.373
  2. 전류센서가 없는 열전모듈의 최대전력점 추적방식 vol.18, pp.9, 2013, https://doi.org/10.5762/kais.2017.18.9.436
  3. 저전력 고에너지 효율 열전에너지 하베스팅을 위한 자가 리셋 기능을 갖는 영점 전류 스위칭 회로 설계 vol.25, pp.1, 2013, https://doi.org/10.7471/ikeee.2021.25.1.206