• Title/Summary/Keyword: DC voltage ratio

Search Result 387, Processing Time 0.033 seconds

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

A Study on the etching mechanism of $CeO_2$ thin film by high density plasma (고밀도 플라즈마에 의한 $CeO_2$ 박막의 식각 메커니즘 연구)

  • Oh, Chang-Seok;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.8-13
    • /
    • 2001
  • Cerium oxide ($CeO_2$) thin film has been proposed as a buffer layer between the ferroelectric thin film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS) structures for ferroelectric random access memory (FRAM) applications. In this study, $CeO_2$ thin films were etched with $Cl_2$/Ar gas mixture in an inductively coupled plasma (ICP). Etch properties were measured for different gas mixing ratio of $Cl_2$($Cl_2$+Ar) while the other process conditions were fixed at RF power (600 W), dc bias voltage (-200 V), and chamber pressure (15 mTorr). The highest etch rate of $CeO_2$ thin film was 230 ${\AA}$/min and the selectivity of $CeO_2$ to $YMnO_3$ was 1.83 at $Cl_2$($Cl_2$+Ar gas mixing ratio of 0.2. The surface reaction of the etched $CeO_2$ thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. There is a Ce-Cl bonding by chemical reaction between Ce and Cl. The results of secondary ion mass spectrometer (SIMS) analysis were compared with the results of XPS analysis and the Ce-Cl bonding was monitored at 176.15 (a.m.u). These results confirm that Ce atoms of $CeO_2$ thin films react with chlorine and a compound such as CeCl remains on the surface of etched $CeO_2$ thin films. These products can be removed by Ar ion bombardment.

  • PDF

A Multi-Polarization Reconfigurable Microstrip Antenna Using PIN Diodes (PIN 다이오드를 이용한 다중 편파 재구성 마이크로스트립 안테나)

  • Song, Taeho;Lee, Youngki;Park, Daesung;Lee, Seokgon;Kim, Hyoungjoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.492-501
    • /
    • 2013
  • In this paper, a multi polarization reconfigurable microstrip antenna that can be used selectively for four polarizations(vertical polarization, horizontal polarization, right hand circular polarization, left hand circular polarization) at the S-band is presented. The proposed antenna consists of four PIN diodes and a microstrip patch with a cross slot and a circular slot and is fed by utiliting electromagnetic coupling between the microstrip patch and the feed line. The proposed antenna has a DC bias network to supply DC voltage to each PIN diode and the polarization can be determined by controlling the ON /OFF states of four PIN diodes. The fabricated antenna has a VSWR below 2 in the vertical polarization(3.17~3.21 GHz), the horizontal polarization(3.16~3.20 GHz), the left hand circular polarization (3.08~3.19 GHz), and the right hand circular polarization(3.10~3.2 GHz) frequency bands. The designed antenna has the cross polarization level higher than 20 dB, a gain over 5 dBi for the linear polarization states, and 3 dB axial ratio bandwidth wider than 50 MHz in the circular polarization states.

Fabrication and Analysis of Thin Film Supercapacitor using a Cobalt Oxide Thin Film Electrode (코발트 산화물 박막을 이용한 박막형 슈퍼 캐패시터의 제작 및 특성평가)

  • Kim, Han-Gi;Im, Jae-Hong;Jeon, Eun-Jeong;Seong, Tae-Yeon;Jo, Won-Il;Yun, Yeong-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.339-344
    • /
    • 2001
  • An all solid-state thin film supercapacitor (TFSC) with Co$_3$O$_4$/LiPON/Co$_3$O$_4$ structure was fabricated on Pt/Ti/Si substrate using Co$_3$O$_4$ thin film electrode. Each Co$_3$O$_4$ film was grown by reactive dc reactive magnetron sputtering with increasing $O_2$/[Ar+O$_2$] ratio. Amorphous LiPON electrolyte film was deposited on Co$_3$O$_4$/Pt/Ti/Si in pure nitrogen ambient by using reactive rf magnetron sputtering. The electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ multi-layer structures exhibits a behavior of a bulk-type supercapacitor, even though much lower capacity (from 5 to 25 mF/$\textrm{cm}^2$-$\mu\textrm{m}$) than that of the bulk one. It was found that the TFSC showed a fairly constant discharge capacity with a constant current of 50 $\mu\textrm{A}/\textrm{cm}^2$ at the cut-off voltage 0-2V during 400 cycles. It is shown that the electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ TFSC is dependent upon the sputtering gas ratio. The capacity dependency of electrode films on different gas ratios was explained by different structural, electrical, and surfacical properties.

  • PDF

Dry Etching of $Al_2O_3$ Thin Film in Inductively Coupled Plasma

  • Xue, Yang;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.67-67
    • /
    • 2009
  • Due to the scaling down of the dielectrics thickness, the leakage currents arising from electron tunneling through the dielectrics has become the major technical barrier. Thus, much works has focused on the development of high k dielectrics in both cases of memories and CMOS fields. Among the high-k materials, $Al_2O_3$ considered as good candidate has been attracting much attentions, which own some good properties as high dielectric constant k value (~9), a high bandgap (~2eV) and elevated crystallization temperature, etc. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of BClxOy compound. In this study, the etch characteristic of ALD deposited $Al_2O_3$ thin film was investigated in $BCl_3/N_2$ plasma. The experiment were performed by comparing etch rates and selectivity of $Al_2O_3$ over $SiO_2$ as functions of the input plasma parameters such as gas mixing ratio, DC-bias voltage and RF power and process pressure. The maximum etch rate was obtained under 15 mTorr process perssure, 700 W RF power, $BCl_3$(6 sccm)/$N_2$(14 sccm) plasma, and the highest etch selectivity was 1.9. We used the x-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. The Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Low power 3rd order single loop 16bit 96kHz Sigma-delta ADC for mobile audio applications. (모바일 오디오용 저 전압 3 차 단일루프 16bit 96kHz 시그마 델타 ADC)

  • Kim, Hyung-Rae;Park, Sang-Hune;Jang, Young-Chan;Jung, Sun-Y;Kim, Ted;Park, Hong-June
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.777-780
    • /
    • 2005
  • 모바일 오디오 적용을 위한 저전력 ${\Sigma}{\Delta}$ Modulator 에 대한 설계와 layout 을 보였다. 전체 구조는 3 차 단일 피드백 루프이며, 해상도는 16bit 을 갖는다. 샘플링 주파수에 따른 Over-sampling Ratio 는 128(46kHz) 또는 64(96kHz) 가 되도록 하였다. 차동 구조를 사용한 3 차 ${\Sigma}{\Delta}$ modulator 내의 적분기에 사용된 Op-Amp 는 DC-Gain 을 높이기 위해서 Gain-boosting 기법이 적용되었다. ${\Sigma}{\Delta}$ modulator 의 기준 전압은 전류 모드 Band-Gap Reference 회로에서 공급이 되며, PVT(Process, Voltage, Temperature) 변화에 따른 기준 전압의 편차를 보정하기 위하여, binary 3bit 으로 선택하도록 하였다. DAC 에서 사용되는 단위 커패시터의 mismatch 에 의한 성능 감소를 막기 위해, DAC 신호의 경로를 임의적으로 바꿔주는 scrambler 회로를 이용하였다. 4bit Quantizer 내부의 비교기 회로는 고해상도를 갖도록 설계하였고, 16bit thermometer code 에서 4bit binary code 변환시 발생하는 에러를 줄이기 위해 thermometer-to-gray, gray-to-binary 인코딩 방법을 적용하였다. 0.18um CMOS standard logic 공정 내 thick oxide transistor(3.3V supply) 공정을 이용하였다. 입력 전압 범위는 2.2Vp-p,diff. 이며, Typical process, 3.3V supply, 50' C 시뮬레이션 조건에서 2Vpp,diff. 20kHz sine wave 를 입력으로 할 때 SNR 110dB, THD 는 -95dB 이상의 성능을 보였고, 전류 소모는 6.67mA 이다. 또한 전체 layout 크기는 가로 1100um, 세로 840um 이다.

  • PDF

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

Electrical Properties of Multilayer Piezoelectric Transformer using PMN-PZN-PZT Ceramics (PMN-PZN-PZT 세라믹스를 이용한 적층형 압전변압기의 전기적 특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Paik, Dong-Soo;Kang, Jin-Kyu;Cho, Hong-Hee;Lee, Sung-Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.655-661
    • /
    • 2006
  • Dielectric and piezoelectric properties of PMN-PZT ceramics with a high mechanical quality factor$(Q_m)$ and a low temperature sintering temperature were investigated as a function of PZN substitution in order to develop multilayer piezoelectric transformer for AC-DC converter. Multilayer piezoelectric transformers were subsequently manufactured using the PMN-PZN-PZT ceramic offering the optimal behavior and then the electrical performance were invetigated. At the sintering temperature of $940^{\circ}C$, density, electromechanical coupling factor$(k_p)$, mechanical qualify factor$(Q_m)$ and dielectric constant$(\varepsilon_r)$ of 8 mol% PZN substituted specimen were $7.73g/cm^3$, 0.524, 1573 and 1455, respectively. The PZN substitution caused a increase in the dielectric constant and the electromechnical coupling factor. The voltage step-up ratio of multilayer piezoelectric transformer showed the maximum value at near the resonant frequency of 76.55 kHz and increased according to the increase of load resistance. The multilayer piezoelectric transformer with the output impedance coincided with the load resistance showed the temperature increase of less than $20^{\circ}C$ at the output power of 10 W. Based on the results, the manufactured multilayer transformer using the low temperature sintered PMN-PZN-PZT ceramics can be stably driven for both step-up and down transformers.

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

Josephson Property and Magnetoresistance in Y$_1Ba_2Cu_3O_{7-x}$ and La$_{0.2}Sr_{0.8}MnO_3$ Films on Biepitaxial SrTiO$_3$/(MgO/)Al$_2O_3$(1120) (SrTiO$_3$/(MgO/)Al$_2O_3$(1120) 위에 쌍에피택셜하게 성장한 Y$_1Ba_2Cu_3O_{7-x}$와 La$_{0.2}Sr_{0.8}MnO_3$ 박막의 조셉슨 및 자기저항 특성연구)

  • Lee, Sang-Suk;Hwang, Do-Guwn
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.185-188
    • /
    • 1999
  • Biepitaxial Y$_1Ba_2Cu_3O_{7-x}$ (YBCO) and La$_{0.2}Sr_{0.8}MnO_3$ (LSMO) thin films have been prepared on SrTiO$_3$ buffer layer and MgO seed layer grown on Al$_2O_3$(11${\bar{2}}$0)substrates by dc-sputtering with hollow cylindrical targets, respectively. We charaterized Josephson properties and significantly large magnetoresistance in YBCO and LSMO films with 45$^{\circ}$ grain boundary junction, respectively. The observed working voltage (I$_cR_n$) at 77 K in grain boundary junction was below 10${\mu}$V, which is typical I$_cR_n$ value of single biepitaxial Josephson junction. The field magnetoresistance ratio (MR) of LSMO grain boundary juncoon at 77K was enhanced to 13%, which it was significant MR value with high magnetic field sensitivity at a low field of 250 Oe. These results indicate that inserting the insulating layer instead of the grain boundary layer with metallic phase can be possible to apply a new SIS Josephson junction and a novel magnetic device using spin-polarized tunneling junction.

  • PDF