• Title/Summary/Keyword: DC sputtering

Search Result 1,032, Processing Time 0.027 seconds

Characteristics of IGZO Thin Film Transistor Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링 방법을 이용하여 증착한 IGZO 박막트랜지스터의 특성)

  • Kim, Sung-Yeon;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • Indium Gallium Zinc Oxide (IGZO) thin films were deposited onto 300 nm-thick oxidized Si substrates and glass substrates by direct current (DC) magnetron sputtering of IGZO targets at room temperature. FESEM and XRD analyses indicate that non-annealed and annealed IGZO thin films exhibit an amorphous structure. To investigate the effect of an annealing treatment, the films were thermally treated at $300^{\circ}C$ for 1hr in air. The IGZO TFTs structure was a bottom-gate type in which electrodes were deposited by the DC magnetron sputtering of Ti and Au targets at room temperature. The non-annealed and annealed IGZO TFTs exhibit an $I_{on}/I_{off}$ ratio of more than $10^5$. The saturation mobility and threshold voltage of nonannealed IGZO TFTs was $4.92{\times}10^{-1}cm^2/V{\cdot}s$ and 1.46V, respectively, whereas these values for the annealed TFTs were $1.49{\times}10^{-1}cm^2/V{\cdot}$ and 15.43V, respectively. It is believed that an increase in the surface roughness after an annealing treatment degrades the quality of the device. The transmittances of the IGZO thin films were approximately 80%. These results demonstrate that IGZO thin films are suitable for use as transparent thin film transistors (TTFTs).

Enhancement of the Corrosion Resistance of CrN Film Deposited by Inductively Coupled Plasma Magnetron Sputtering

  • Chun, Sung-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.112-117
    • /
    • 2021
  • Inductively coupled plasma magnetron sputtering (ICPMS) has the advantage of being able to dramatically improve coating properties by increasing the plasma ionization rate and the ion bombardment effect during deposition. Thus, this paper presents the comparative results of CrN films deposited by direct current magnetron sputtering (dcMS) and ICPMS systems. The structure, microstructure, and mechanical and corrosive properties of the CrN coatings were investigated by X-ray diffractometry, scanning electron microscopy, nanoindentation, and corrosion-resistance measurements. The as-deposited CrN films by ICPMS grew preferentially on a 200 plane compared to dcMS on a 111 plane. As a result, the films deposited by ICPMS had a very compact microstructure with high hardness. The nanoindentation hardness reached 19.8 GPa, and 13.5 GPa by dcMS. The corrosion current density of CrN film prepared by ICPMS was about 9.8 × 10-6 mA/cm2, which was 1/470 of 4.6 × 10-3 mA/cm2, the corrosion current density of CrN film prepared by dcMS.

Mechanical and Structural Behaviors of HfN Thin Films Fabricated by Direct Current and Mid-frequency Magnetron Sputtering

  • Sung-Yong Chun
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.30-35
    • /
    • 2023
  • Hafnium nitride (HfN) thin films were fabricated by mid-frequency magnetron sputtering (mfMS) and direct current magnetron sputtering (dcMS) and their mechanical and structural properties were compared. In particular, changes in the HfN film properties were observed by changing the pulse frequency of mfMS between 5 kHz, 15 kHz, and 30 kHz. The crystalline structure, microstructure, 3D morphology, and mechanical properties of the HfN films were compared by x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and nanoindentation tester, respectively. HfN film deposited by mfMS showed a smoother and denser microstructure as the frequency increased, whereas the film deposited by dcMS showed a rough and sloppy microstructure. A single δ-HfN phase was observed in the HfN film made by mfMS with a pulse frequency of 30 kHz, but mixed δ-HfN and HfN0·4 phases were observed in the HfN film made by dcMS. The mechanical properties of HfN film made by mfMS were improved compared to film made by dcMS.

The resistivity properties of tungsten nitride films deposited by RF sputtering (RF 스퍼터링 증착에 의한 질화 텅스텐 박막의 비저항 특성)

  • 이우선;정용호;이상일
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.196-203
    • /
    • 1995
  • We presented Tungsten and Tungsten Nitride thin films deposited by RF and DC sputtering. It deposited at various conditions that determining the resistivity and sheet resistivity by stabilizing the basic theory. We investigated properties of the resistivity and sheet resistivity of these films under various conditions, temperature of substrate, flow rate of the argon gas and content of nitrogen from nitrogen-argon mixtures. As the temperature of substrate increased and the flow rate of the argon gas decreased, the resistivities of these films reduced by structural transformation. We found that these resistivities were depend on the temperature of substrate, flow rate and electric power. Very highly resistive tungsten films obtained at 10W RF power. On the contrary, we found that films deposited by DC sputtering, from which very lowly resistive tungsten films were obtained. Tungsten nitride thin films deposited by reactive DC sputtering and the resistivities of these films increased as the content of nitrogen gas increased from nitrogen-argon mixture. And also we found the results show very good agreement, compared with experimental data.

  • PDF

Mechanical Properties of Ti doped Amorphous Carbon Films prepared by CFUBM Sputtering Method (CFUBM Sputtering법으로 증착시킨 티타늄이 첨가된 비정질 탄소 박막의 기계적 특성 연구)

  • Cho, Hyung-Jun;Park, Yong-Seob;Kim, Hyung-Jin;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.706-710
    • /
    • 2007
  • Ti-containing amorphous carbon (a-C:Ti) films shows attractive mechanical properties such as low friction coefficient, good adhesion to various substrate and high wear resistance. The incorporation of titanium in a-C films is able to improve the electrical conductivity, friction coefficient and adhesion to various substrates. In this study, a-C:Ti films were depositied on Si wafer by closed-field unbalanced magnetron (CFUBM) sputtering system composed two targets of carbon and titanium. The tribological properties of a-C:Ti films were investigated with the increase of DC bias voltage from 0 V to - 200 V. The hardness and elastic modulus of films increase with the increase of DC bias voltage and the maximum hardness shows 21 GPa. Also, the coefficient of friction exhibites as low as 0.07 in the ambient. In the result, the a-C:Ti film obtained by CFUBM sputtering method improved the tribological properties with the increase of DC bias volatage.