• 제목/요약/키워드: DC regulation

Search Result 288, Processing Time 0.024 seconds

The Double-Output DC-DC Converter Using the Current-Fed Converter (전류환류형 DC-DC콘버터를 이용한 이중출력 회로)

  • 이윤종;김희준;안태영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.451-457
    • /
    • 1989
  • The current-fed DC-DC converter, which is known as the most stable DC-DC converter, has a two-winding reactor in series with the input. In this paper a new double-output DC-DC converter circuit, in which the 2nd winding of the reactor is creating the 2nd output, while the 2nd winding is feeding the energy to the input in the current-fed converter, is propose. The steady state characteristics of the new circuit are clarified and it is found that the maximum value exists in the 2nd output. Furthermore, regulation characteristic is analysed by 'Slope method' and the result shows good agreement with experimental value. The 2nd output voltage regulation is performed by using regulation IC. As a result, we have achieved good regulation characteristics.

  • PDF

DC Bus Voltage Regulation With Six-Step Operation in Maritime DC Power System (식스 스텝 운전을 이용한 선박용 DC 전력 시스템의 직류단 전압 제어)

  • Yun, Jonghun;Son, Young-Kwang;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.263-270
    • /
    • 2021
  • Active AC/DC converters with PWM operation are utilized to regulate rectified DC bus voltage of a permanent magnet synchronous generator in the maritime DC power system. A DC bus voltage regulation strategy that exploits the six-step operation is proposed in this study. Compared with that of the PWM operation, switching loss of the converter can be significantly reduced under the six-step operation. Moreover, conduction loss can also be reduced due to the high modulation index and reduced flux-weakening current of the six-step operation. A controller is used for the proposed DC bus voltage regulation strategy to verify its validity with the simulation and experimental setup. The simulation and the experimental test results showed that the converter loss reduces to a maximum of 70% and 19%, respectively.

A Cross Regulation Analysis for Single-Inductor Dual-Output CCM Buck Converters

  • Wang, Yao;Xu, Jianping;Zhou, Guohua
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1802-1812
    • /
    • 2016
  • Cross regulation is a key technical issue of single-inductor multiple-output (SIMO) DC-DC converters. This paper investigates the cross regulation in single-inductor dual-output (SIDO) Buck converters with continuous conduction mode (CCM) operation. The expressions of the DC voltage gain, control to the output transfer function, cross regulation transfer function, cross coupled transfer function and impedance transfer function of the converter are presented by the time averaging equivalent circuit approach. A small signal model of a SIDO CCM Buck converter is built to analyze this cross regulation. The laws of cross regulation with respect to various load conditions are investigated. Simulation and experiment results verify the theoretical analysis. This study will be helpful for converter design to reduce the cross regulation. In addition, a control strategy to reduce cross regulation is performed.

Design of Buck DC-DC converter with improved load regulation (Load Regulation을 보상한 Buck DC-DC converter의 설계)

  • Chung, Jin-Il;Park, Yong-Sik;Kim, Youn-Sang;Kwack, Kae-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.528-529
    • /
    • 2008
  • Proposed buck converter includes load current sensing circuit to compensate load regulation. Because error amp has finite gain, there is load regulation in SMPS. In this paper we use variable current source that is added to positive input of comparator and current of current source is changed by sensed load current. The simulation result shows that proposed buck converter has improved load regulation than conventional buck convertor.

  • PDF

A Design of LDO(Low Dropout Regulator) with Enhanced Settling Time and Regulation Property (정착시간과 레귤레이션 특성을 개선한 LDO(Low Dropout Regulator)의 설계)

  • Park, Kyung-Soo;Park, Jea-Gun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.126-132
    • /
    • 2011
  • A conventional LDO(Low Dropout Regulator) uses one OPAMP and one signal path. This means that OPAMP's DC Gain and Bandwidth can't optimize simultaneously within usable power. This also appears that regulation property and settling time of LDO can't improve at the same time. Based on this idea, a proposed LDO uses two OPAMP and has two signal path. To improve regulation property, OPAMP where is used in the path which qualities DC gain on a large scale, bandwidth designed narrowly. To improve settling time, OPAMP where is used in the path which qualities DC gain small, bandwidth designed widely. A designed LDO used 0.5um 1P2M process and provided 200mA of output current. A line regulation and load regulation is 12.6mV/V, 0.25mV/mA, respectively. And measured settling time is 1.5us in 5V supply voltage.

Bi-directional Buck-Boost DC-DC Converter for Bus Voltage Regulation (Bus 전압 레귤레이션을 위한 쌍방향 Buck-Boost DC-DC컨버터)

  • Ko, Tae-Ill;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.348-350
    • /
    • 1994
  • In this paper, bi-directional buck-boost DC-DC converter for bus regulation system is presented. This converter which has one buck and one boost topology achieves bi-directional power flow using a common power inductor and alternative power switches. By connecting the battery to bus line, it can be regulated to bus voltage and charged the battery alternatively. And as an application, a mode controller is adopted to the converter.

  • PDF

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

Investigation of PID Fuzzy Controller for Output Voltage Regulation of Current-Doubler-Rectified Asymmetric Half-Bridge DC/DC Converter

  • Chung, Gyo-Bum
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2007
  • This paper investigates a PID fuzzy controller for output voltage regulation of a current-doubler-rectified asymmetric half-bridge (CDRAHB) DC/DC converter. The controller is a PD-type fuzzy controller in parallel with a linear integral controller. The PD type fuzzy controller is for providing the varying gain at the different operating conditions to regulate the output voltage. The linear integral controller is for removing the steady-state error of the output voltage. In order to show the outstanding dynamic characteristics of the proposed controller, PSIM simulation studies are carried out and compared to the results for which the conventional loop gain design method is used.

Application of Fuzzy Integral Control for Output Regulation of Asymmetric Half-Bridge DC/DC Converter with Current Doubler Rectifier

  • Chung, Gyo-Bum;Kwack, Sun-Geun
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.238-245
    • /
    • 2007
  • This paper considers the problem of regulating the output voltage of a current doubler rectified asymmetric half-bridge (CDRAHB) DC/DC converter via fuzzy integral control. First, we model the dynamic characteristics of the CDRAHB converter with the state-space averaging method, and after introducing an additional integral state of the output regulation error, we obtain the Takagi-Sugeno (TS) fuzzy model for the augmented system. Second, the concept of parallel distributed compensation is applied to the design of the TS fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, numerical simulations of the considered design method are compared to those of the conventional method, in which a compensated error amplifier is designed for the stability of the feedback control loop.

A Study On The Improved Line Regulation For High Efficiency BoostDC-DCConverter (고효율 Boost DC-DC 변환기를 위한 Line Regulation 향상에 대한 연구)

  • Doo, Su-Yeon;Jeong, Seong-Yon;Chung, Jin-Il;Kwack, Kae-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.391-392
    • /
    • 2007
  • In recent, portable information and communication terminals such as a notebook computer, an electronic pocketbook, a hand personal computer(PC) have been regards as the leading role in the coming next generation portable multimedia terminals which have hi-directional wireless data communication capability and can receive information and communication services such as electronic mail, database searching, and electronic shopping at anytime and anyplace. Therefore, in this paper, the circuit is simulated by 0.35um memory process used Current Limit for Boost DC-DC converter. Supply voltage $2.5V{\sim}3.3V$, output voltage 5V, Clock Frequency 1MHz, output current 200mA and line regulation decreased 12.46%.

  • PDF