• Title/Summary/Keyword: DC power flow

Search Result 291, Processing Time 0.026 seconds

A Study on Interleaved Bi-directional DC-DC converter for Redox Flow Battery of Four Phase type (Four Phase 형태의 레독스 흐름전지용 인터리브드 양방향 DC-DC컨버터에 관한 연구)

  • Park, Ji-Ho;Oh, Seung-Yeol;Park, Byung-Chul;Choi, Jung-Sik;Cha, Dae-Seak;Song, Sung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.155-156
    • /
    • 2013
  • 최근 화석에너지 고갈과 환경문제, 전력대란을 격음으로써 신재생 에너지에 관한 관심이 많아지고 있다. 특히 연료전지를 이용하여 높은 신뢰성의 양방향 DC-DC컨버터가 요구되어 많은 연구개발이 진행되고 있다. 그중 컨버터를 병렬로 구동하여 전류리플을 줄이는 인터리브드 방식을 많이 사용하지만 인덕터의 부피, 비용이 증가하는 단점이 있다. 본 논문에서는 결합 인덕터를 이용한 Four-Phase 형태의 인터리브드 양방향 DC-DC 컨버터를 제안하고, 최적의 결합계수와 인덕터에 흐르는 전류 리플 저감을 PSIM 시뮬레이션을 통해 검증한다.

  • PDF

Supervisory Control for Energy Management of Islanded Hybrid AC/DC Microgrid

  • Mansour, Henda Ben;Chaarabi, Lotfi;Jelassi, Khaled;Guerrero, Josep M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • This paper presents the modeling for islanded hybrid AC/DC microgrid and the verification of the proposed supervisory controller for energy management for this microgrid. The supervisory controller allows the microgrid system to operate in different power flows through the proposed control algorithm, it has several roles in the management of the energy flow between the different components of the microgrid for reliable operation. The proposed microgrid has both essential objectives such as the maximum use of renewable energies resources and the reduction of multiple conversion processes in an individual AC or DC microgrids. The microgrid system considered for this study has a solar photovoltaic (PV), a wind turbine (WT), a battery (BT), and a AC/DC loads. A small islanded hybrid AC/DC microgrid has been modeled and simulated using the MATLAB-Simulink. The simulation results show that the system can maintain stable operation under the proposed supervisory controller when the microgrid is switched from one operating mode of energy flow to another.

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems

  • Chen, Jianliang;Liao, Xiaozhong;Sha, Deshang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1026-1034
    • /
    • 2015
  • In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.

Power-factor improvement of residential solar air-conditioner power system (가정용 태양광 에어컨 전원시스템의 역률 개선)

  • Park, Y.J.;Mun, S.P.;Park, J.W.;Suh, K.Y.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.6-8
    • /
    • 2002
  • Generally in solar air conditioning system, the diode rectifier is used to build up DC link voltage from AC source. The diode rectifier is simple and cheap but it brings out the problems of low power factor and plentiful harmonics at the AC source. Also It can degrade the utilization rate of solar energy because the reverse of power flow cannot be made. Hence, in this paper to overcome the peak power problems in summer and to endure good AC input characteristics, solar air conditioning system using the PWM converter is proposed. A high input power factor of 97[%] and an efficiency of 98[%] are also obtained. The harmonic guide lines of proposed rectifier is no interfered with inverter switching, resulting in a simple, reliable and low cost ac to dc converters in comparison with the boost type current improving circuits.

  • PDF

DC-link Voltage Control of Grid Connected PV System using Quasi Z-Source Inverter (QZSI를 이용한 계통연계형 태양광발전 시스템의 직류단 전압제어)

  • Park, Jong-Hyoung;Kim, Heung-Geun;Nho, Eui-Cheol;Chun, Tae-Won;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.201-210
    • /
    • 2014
  • In this paper, dc-link voltage control of a grid-connected QZSI is presented. Since the input current of the ZSI is discontinuous, a capacity with relatively large capacitance should be connected to the output of the PV array in order to reduce the current ripple. Due to the presence of the impedance network inductor in series with the PV array, the QZSI can achieve continuous input current flow. Several dc-link voltage control methods are compared and the method for power quality improvement is also presented. The performance of the proposed method is verified through both simulation and experimental results.

Optimal SOC Reference Based Active Cell Balancing on a Common Energy Bus of Battery

  • Bae, SunHo;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • This paper presents a study on the state-of-charge (SOC) reference based active cell balancing in real-time. The optimal references of SOC are determined by using the proposed active cell balancing system with the bidirectional DC/DC converters via the dual active bridge (DAB) type. Then, the energies between cells can be balanced by the power flow control of DAB based bidirectional DC/DC converters. That is, it provides the effective management of battery by transferring energy from the strong cell to the weak one until the cell voltages are equalized to the same level and therefore improving the additional charging capacity of battery. In particular, the cell aging of battery and power loss caused from energy transfer are considered. The performances of proposed active cell balancing system are evaluated by an electromagnetic transient program (EMTP) simulation. Then, the experimental prototype is implemented in hardware to verify the usefulness of proposed system.

Novel High Step-Up DC/DC Converter Structure Using a Coupled Inductor with Minimal Voltage Stress on the Main Switch

  • Moradzadeh, Majid;Hamkari, Sajjad;Zamiri, Elyas;Barzegarkhoo, Reza
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2005-2015
    • /
    • 2016
  • A high-step-up DC/DC converter for renewable energy systems is proposed. The proposed structure provides high voltage gain by using a coupled inductor without the need for high duty cycles and high turn ratios. The voltage gain is increased through capacitor-charging techniques. In the proposed converter, the energy of the leakage inductors of the coupled inductor is reused. This feature reduces the stress on the switch. Therefore, a switch with low ON-state resistance can be used in the proposed converter to reduce losses and increase efficiency. The main switch is placed in series with the source. Therefore, the converter can control the energy flow from the source to the load. The operating principle is discussed in detail, and a steady state analysis of the proposed converter is conducted. The performance of the proposed converter is verified by experimental results.

Control of Inline Co-Axil Valve using Servo Motor (서보모터를 이용한 Inline Co-axil 밸브 제어)

  • Lee, Joong-Youp;Jung, Tae-Kyu;Lee, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1115-1119
    • /
    • 2007
  • Five control methods (Speed Control, PID Gain Scheduling, Loop Time Control, Simple PID, Switching Control) have been applied to the control of an Inline Co-axial valve by the simulation of AMESim. The simulation results have shown that the speed control method is the most stable and the fastest way to reach to the set point in the simulation of the flow control. Moreover, It has been found that the five control methods have the almost same characteristics in the power consumption, the counter electromotive force, and the motor angular velocity. According to the analysis results, the fast and stable control characteristics of the speed control method is the most suitable for the flow control using a inline co-axial valve with a DC(BLCD) motor.

  • PDF

A Study on DC Thermal Plasma Generation and ist Characteristics (직류 열 플라즈마의 발생 및 그특성에 관한 연구)

  • 김원규;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1219-1226
    • /
    • 1990
  • This paper is to report the results on the design and construction of a thermal plasma generator with high current DC source. Also, this paper presents the methods to stabilize plasma and to find effects of process variables on plasma characteristics. For this purpose, the reaction chamber, vacuum system, plasma generating torch, magnetic field generating coil with power supply, high current DC source and the other parts have been designed. Fundamental properties of the thermal plasma under various conditions have been measured and analyzed. Magnetic Reynolds Number has been introduced to explain the relationship between plasma and external magnetic field. Through this number, the effect of magnetic field on the plasma has been explained under various flow rates and pressure. A sudden increase in the plasma voltage has been observed with the increase of magnetic field. From this, fundamental changes in plasma flow are believed to occur at the nozzle, and an effort to explain the phenomenon has been tried.

  • PDF

The Sheet Resistance Properties of Tungsten Nitride Thin films for Intergrated Circuit (IC소자용 질화 텅스텐 박막의 면저항 특성)

  • 이우선;정용호;김남오;정종상;유병수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.94-97
    • /
    • 1997
  • We investigated the sheet resistance properties of tungsten nitride thin films deposited by RF and DC sputtering system. It deposited at various conditions that determine the sheet resistance. The properties of the sheet resistance of these films were measured under various conditions. Sheet resistance analysed under the flow rate of the argon gas and contents of nitrogen from nitrogen-argon gas mixtures. We found that these sheet resistance were largely depend on the temperature of substrate, gas flow rate and RF power. Very high and low sheet resistance of tungsten films obtained by DC sputtering. As the increase of contents of nitrogen gas obtained from nitrogen-argon gas mixture, tungsten nitride thin films deposited by the reactive DC sputtering and the sheet resistance of these films were increased.

  • PDF