http://dx.doi.org/10.6113/TKPE.2014.19.3.201

QZSI를 이용한 계통연계형 태양광발전 시스템의 직류단 전압제어

박종형¹, 김흥근[†], 노의철², 전태원³, 차헌녕⁴

DC-link Voltage Control of Grid Connected PV System using Quasi Z-Source Inverter

Jong-Hyoung Park¹, Heung-Geun Kim[†], Eui-Cheol Nho², Tae-Won Chun³, and Honnyong Cha⁴

Abstract – In this paper, dc-link voltage control of a grid-connected QZSI is presented. Since the input current of the ZSI is discontinuous, a capacity with relatively large capacitance should be connected to the output of the PV array in order to reduce the current ripple. Due to the presence of the impedance network inductor in series with the PV array, the QZSI can achieve continuous input current flow. Several dc-link voltage control methods are compared and the method for power quality improvement is also presented. The performance of the proposed method is verified through both simulation and experimental results.

Keywords: grid connected quasi z-source inverter(QZSI) system, photovoltaic system, shoot-through, maximum power point tracking(MPPT), impedance network, LCL filter, resonanace control, harmonics compensation

1. 서 론

일반적으로 태양광 발전 시스템은 태양광 어레이가 요구하는 넓은 범위의 전압 제어를 위해 직류/직류 컨버 터와 직류/교류 인버터로 구성되는 2단 구조를 사용한 다. 그러나 2단 구조는 단일 구조에 비해 스위칭 소자가 많이 사용되기 때문에 스위칭 손실이 크고 시스템의 신 뢰성이 낮아진다. 따라서 태양광 발전 시스템의 효율과 신뢰성을 향상시키기 위한 하나의 방안으로 전력회로 단일화에 대한 관심이 커지고 있다.

전력회로의 단일화는 ZSI (Z-Source Inverter)^[1-2] 또 는 QZSI (Quasi Z-Source Inverter)^[3]와 같이 임피던스 네트워크를 갖는 인버터를 활용하여 가능하고 이러한

Paper number: TKPE-2014-19-3-1

- ² Dept. of Electrical Engineering, Pukyong Nat'l Univ.
- ³ Dept. of Electrical Engineering, University of Ulsan
- ⁴ School of Energy Engineering, Kyungpook Nat'l Univ. Manuscript received Jun. 5, 2013; accepted Feb. 18, 2014

시스템은 2단 구성 시스템보다 높은 효율로 동작한다^[4]. ZSI는 입력단에 다이오드가 연결되어 암 단락이 발생 함에 따라 입력 전류가 불연속인 반면 QZSI는 입력단에 인덕터부터 연결되어 전류가 연속이기 때문에 입력 단 커패시터의 용량을 줄일 수 있고 더불어 공통 접지의 사용으로 시스템 구성이 용이하다는 장점이 있다.

ZSI와 QZSI는 독특한 임피던스 네트워크로 구성되어 일반적인 전압형 인버터가 갖는 8가지 스위치 상태에 암 단락 상태를 추가로 사용할 수 있고 이 암 단락 상 태의 지속시간을 제어하여 2단 구성 시스템의 직류/직류 컨버터 기능을 대신할 수 있기 때문에 단계적으로 태양 광 발전 시스템에의 그 적용 가능성과 효용성이 검증되 어왔다^{[5]-[9]}.

[5]에서는 태양광 시스템 적용에 필요한 ZSI의 기본적 인 제반 사항들을 다루었고 [6]은 시뮬레이션을 통해 가 능성을 제시하였으며 [7]을 통해 미리 계산된 고정 암 단락 비를 사용하여 임의의 전압에서 동작이 가능함을 알 수 있다. [8]은 가변전류 종속 전압원을 사용하여 최 대 전력점 추적 지령에 따라 입력 전압이 제어 가능함 을 보였고 [9]에서는 실제 계통에 연계하여 태양광 어례 이의 특성에 따른 시스템의 동작 결과를 보여줌으로써 완성된 제어를 보인다. 이와 더불어 ZSI나 QZSI 시스템

Print ISSN: 1229-2214 Online ISSN: 2288-6281

[†] Corresponding author: kimhg@knu.ac.kr, Dept. of Electrical Engineering, Kyungpook Nat'l Univ. Tel: +82-53-950-5605 Fax: +82-53-950-6600

¹ Power Grid Integration Team, Power & Industrial Systems R&D Center, Hyosung Co., LTD.

의 최대 전력점 추적방식의 개선^{[10],[11]}과 하나의 분산전 원으로서 대기 상태에서 계통 전력 품질 향상에 기여^[12] 하는 방법을 제시하는 등 다양한 연구가 진행 중이다.

그러나 여전히 암 단락 비 제어를 통한 최대 전력점 추적 제어 시 직류단 전압이 아닌 임피던스 네트워크의 커패시터 전압을 제어요소로 사용하여 암 단락 비 변화 에 따라 직류 단 전압이 동시에 변동하여 맥동 성분이 발생한다. 신·재생에너지 시스템의 계통연계가 늘어나면 서 계통의 안정과 품질보장을 위해 태양광 발전 시스템 의 경우 계통 주입 전류의 총고조파왜율(THD)이 5% 이하를 만족해야 하는데 이러한 맥동성분은 계통 전류 의 THD를 증가시켜 계통연계 기준에 미달될 수도 있으 며 계통에 연계된 다른 민감 부하의 오동작을 유발하여 개선이 필요하다.

따라서 본 논문에서는 ZSI에 비해 시스템 구성이 유 리한 QZSI를 이용하여 단일구성의 계통연계형 태양광 발전 시스템을 구현한 다음 직류단 전압을 일정하게 유 지함으로서 시스템의 전류 THD증가를 억제하기 위한 새로운 직류단 전압 간접제어를 제안한다. 제안된 제어 방법은 PSIM을 이용한 시뮬레이션과 실제 실험을 통해 검증한다. 검증을 위한 시스템에는 기본적으로 LCL 필 터를 사용하였으며, 전압 제어기는 비례-적분 제어기를 사용하였고 전류 제어기에는 비례-적분 제어기에 계통 고조파 전압 보상을 위한 공진 제어기를 추가하였다. 최 대 전력점 추적 제어는 P&O법을 사용하였다.

시스템 입력 전원인 PV 어레이는 10kW급 태양광 시 뮬레이터로 대신하여 각종 기후 변동에 대비하였고 출 력의 경우 실험실의 수시로 변하는 계통 상황 때문에 전류 THD의 값은 여러 번의 실험을 통하여 평균값을 취했다.

2. 임피던스 네트워크의 동작 상태

임피던스 네트워크는 스위치 상태에 따라 크게 두 가 지 상태로 나눌 수 있다. 일반 전압형 인버터의 스위칭 상태를 모두 활성 상태(Active state)라 하고 암 상단 스 위치와 하단 스위치가 동시에 켜지는 상태를 암 단락 상태(Shoot-through state)라 한다.

암 단락이 발생하면 커패시터 전압 v_{C1} 과 v_{C2} 의 차이 에 의해 다이오드가 오프 되고 그림 1에 보이는 바와 같이 두 개의 폐회로가 구성된다. 이 때 각각의 인덕터 전류는 선형적으로 증가한다.

그림 2는 활성 상태의 회로 구성을 보인다. 암 단락으 로 인해 증가했던 인덕터 전류가 부하에 의해 제한되면 서 다이오드로 흘러 다이오드를 도통시키고 각각의 인 덕터에는 음의 전압이 인가되어 인덕터 전류는 선형적 으로 감소한다. 임피던스 네트워크의 동작 상태는 스위 칭 한 주기에 각각 한 번씩 나타나고 임피던스 네트워 크의 인덕터도 그에 따라 충·방전을 반복한다.

Fig. 3 Boost ratio of v_{C1} and v_{PN} when the v_{PV} is constant

정상상태에 이르렀을 때 한 주기 동안 인덕터에 유기 되는 평균 전압은 영이므로 이를 이용하면 한 주기 평 균 관계식을 유도할 수 있다^[9]. 즉, 본 논문에서 사용하 는 관계식은 모두 암 단락 상태와 활성 상태를 포함하 는 한 주기 동안의 평균치로서 어느 한 상태에 국한되 어 성립하지 않는다. 그러나 암 단락 비가 결정되는 한 주기 이상을 고려할 때는 암 단락 비에 따라 값이 변하 므로 순시치로 표현하였다.

입력 전압인 태양광 어레이의 전압이 일정하다고 가 정할 때 커패시터 전압과 활성 상태에서의 직류단 전압 v_{PV} 은 각각 식(1), (2)와 같고^[9] 이를 암 단락 비에 대한 그래프로 나타내면 그림 3과 같다.

$$v_{C1} = \frac{1-d}{1-2d} v_{PV} \tag{1}$$

$$v_{PN} = \frac{1}{1 - 2d} v_{PV}$$
(2)

여기서 d는 암 단락 비라 하고 한 주기 시간 T 동안

암 단락 상태의 지속 시간 T₀의 비율을 의미한다. 활성 상태 지속 시간은 T₁으로 표시한다.

식 (3)은 커패시터 C_1 의 전압으로 표현되는 커패시터 C_2 의 전압 관계식으로 커패시터 C_1 의 전압이 일정할 때 오직 암 단락 비에 의해서만 전압이 결정된다.

$$v_{C2} = \frac{d}{1-d} v_{C1}$$
(3)

3. 시스템 제어

그림 4는 임피던스 네트워크를 활용한 단일 구성의 계통연계형 태양광 발전 시스템 구성도이고 그림 5는 제어기 부분의 상세 블록도이다.

그림 5에 보인 전체 제어블록에서 전류제어기와 전압 제어기는 일반적으로 계통연계형 PCS에 사용되는 비례 -적분 제어기를 기본으로 사용하였다. 본 논문에서 사용 하는 암 단락 제어는 이러한 제어기와 독립적으로 수행 되고 최종 PWM에서만 기존 전압 지령과 함께 간섭을 피해 암 단락 신호를 발생시킨다.

커패시터 전압 제어기에서 계통 주입 전류 지령 값을 발생하고 전류 제어기에서 이를 실제 계통 주입 전류 궤환 값과 비교하여 최종적으로 3상 전압지령을 생성한 다. 또한 최대 전력 점 추적 제어기는 태양광 어레이의 전압과 전류를 이용하여 암 단락 지령을 생성한다. 이렇 게 만들어진 암 단락 지령과 3상 전압지령은 펄스 폭 변조를 통해 하나의 반송파를 사용하여 암 단락 신호를 포함한 스위칭 신호를 만든다.

3.1 커패시터 전압 제어

커패시터 전압 제어기는 임피던스 네트워크의 커패시 터 전압 v_{C1} 을 일정하게 제어하기 위한 계통 주입 전류 지령값을 생성한다. 즉, 계통주입전류 지령값이 커패시 터 C_1 의 충전전류인 i_{C1} 만큼 증가하기 때문에 활성 상 태에서의 인덕터 전류 $i_{L1}(=i_{C2}+i_o)$ 은 커패시터 C_2 를 충전하고 $i_{L2}(=i_{C1}+i_o)$ 은 커패시터 C_1 을 충전한다.

식 (4)로 표현되는 활성 상태에서의 직류단 전압 v_{PN} 는 v_{C2} 의 증가량만큼 증가하게 되고 식 (5)를 만족한다. 반면에 태양광 어레이 전압은 식 (6)과 같이 커패시터 전압 v_{C1} 에서 커패시터 전압 v_{C2} 를 뺀 값으로 v_{C2} 증가 량만큼 감소하게 된다^[9].

$$v_{PN} = v_{C1} + v_{C2} \tag{4}$$

 $v_{PN} = \frac{1}{1 - d} v_{C1}$ (5)

$$v_{PV} = v_{C1} - v_{C2} \tag{6}$$

따라서 커패시터 *C*₁의 전압은 제어에 의해 일정한 반 면 각각의 전압은 그림 6과 같이 암 단락 비 증가에 따

Fig. 4 PV power generation system using a QZSI

Fig. 5 Control block diagram of PV system using a QZSI

Fig. 6 v_{PV} and v_{PV} by shoot-through ratio when v_{C1} is constant

라 증가와 감소로 나타나게 되어 암 단락 비 변화를 통 한 최대 전력점 추적 제어가 가능하다.

일반적인 계통연계형 인버터는 계통 주입 전류 기준 값을 직류단 전압 제어를 통해 얻는데 반해 QZSI는 임 피던스 네트워크의 커패시터 전압 제어를 통해 얻는다. 한주기 평균값으로 유도된 관계식에 의하면 커패시터 전압과 직류단 전압의 평균값은 같기 때문에^[9] 암 단락 이 발생할 때마다 영으로 떨어지는 직류단 전압보다 큰 변화가 없는 커패시터 전압을 센싱하는 것이 더 용이하 기 때문이다. 그러나 전류제어를 위한 스위칭은 활성 상 태에서만 일어나기 때문에 실제 적용되는 전압은 평균 전압이 아닌 활성 상태에서의 직류단 전압 v_{PV} 이 된다.

따라서 기존과 같이 커패시터 전압을 그대로 사용할 경우 일정해야할 직류단 전압이 최대 전력점 추적 제어 에 따라 변동하게 되므로 원하는 전압 제어 기준 값을 추종하지 못할 뿐만 아니라 계속 변동하게 된다. 본 논

Fig. 7 Block diagram of the current controller with resonance controller for compensation of the current distortion

문에서는 이러한 문제점을 개선하기 위해 직류단 전압 이 일정하도록 커패시터 전압 제어 기준 값을 변화시킨 다. 자세한 설명은 4장에서 하도록 한다.

3.2 계통 주입 전류 제어

전류제어기는 동기좌표계를 이용한 비례-적분 제어기 로 일반적인 제어기와 동일하며 계통의 고조파 전압 보 상을 위해 그림 7과 같이 공진제어기를 병렬로 추가하 였다. 제 5, 7차 고조파 성분 전류는 동기좌표계로 변환 하면 제 6고조파로 나타나기 때문에^[13] 6고조파 보상을 위한 공진 제어기 하나만을 사용하였다.

3.3 최대 전력점 추적 제어와 암 단락 신호 발생

최대 전력점 추적제어를 위해 P&O(Perturbation and Observation)법을 수정하여 그 출력이 PV 어레이 전압 이 아닌 암 단락 지령 v_p^* 가 되도록 하였다.

*v_p*는 인버터의 활성 상태와 간섭을 피하기 위해 영상 태에서 암 단락 신호를 발생하도록 한다. 따라서 그림 8 과 같이 암 상단 스위치가 모두 꺼진 3상 전압 지령의 위쪽에 위치시키고 반송파보다 작을 때 암 상단 스위치 들을 켜주는 신호를 발생시키도록 한다. 반대로 암 하단 스위치가 모두 꺼진 3상 전압 지령의 아래쪽 역시 영상 태이기 때문에 *v_p*를 반전시켜 생성한 *v_N*로 하여금 암 하단 스위치를 켜서 암 단락을 발생시키도록 한다. 따라 서 *v_p*가 낮아질수록 암 단락 비가 커지고 높아질수록 작아진다. 이를 다시 P&O법에 적용시키면 최대 전력점 추적을 위해 태양광 어레이 전압을 낮춰야할 때는 그림 6에서와 같이 암 단락 비를 증가시켜야하기 때문에 *v_p* 가 감소하도록 하고 태양광 어레이 전압을 높여야할 때 는 *v_p*를 증가하도록 그림 9와 같이 수정해야한다.

4. 직류단 전압 제어

커패시터 전압 제어를 사용할 경우 암 단락 비를 증 가시키면 커패시터 전압은 일정하게 유지되지만 직류단 전압이 증가하게 되어 스위칭 소자들의 전압 스트레스 가 커지며 최대 전력점 추적 제어에 의해 직류단 전압 이 흔들리게 되어 전류 품질을 저하시킨다.

Fig. 8 PWM signal generation

Fig. 9 P&O method for shoot-through reference generation

is constant

직류단 전압을 일정하게 제어하면 식 (2)와 식 (5)는 각각 식(7)과 식(8)로 정리할 수 있고 각각의 전압은 그 림 10과 같이 나타난다.

$$v_{PV} = (1 - 2d)v_{PN} \tag{7}$$

$$v_{C1} = (1 - d)v_{PN} \tag{8}$$

(9)

그림 10에서 볼 수 있는 바와 같이 커패시터 전압 제 어 대신에 직류단 전압 제어를 하면 다음과 같은 장점 이 있다. 첫째, 최대 전력점 추적에 따라 암 단락 비가 변하더라도 제어를 통해 직류단 전압을 일정하게 유지 할 수 있다. 둘째, 암 단락 비에 따른 각 부분의 전압은 선형적인 특성을 보인다. 암 단락 비 증가에 따라 각 부 분의 전압이 일정한 비율로 감소하기 때문에 제어가 안 정적이다. 셋째, 최대 전력점 추적 속도가 빠르다. 암 단 락 비 증가에 따라 커패시터 전압 $v_{\rm cl}$ 도 감소하게 되어 커패시터 C_2 뿐만 아니라 커패시터 C_1 도 최대 전력점 추적에 기여 한다.

이와 같은 장점을 갖는 직류단 전압제어는 다음과 같 은 두 가지 방법으로 구현이 가능하다. 하나는 직접 직 류단 전압을 센싱하여 제어에 이용하는 직류단 전압 직 접 제어 방법이고 다른 하나는 커패시터 전압을 사용하 여 관계식에 따른 직류단 전압의 계산 값을 제어에 이 용하는 직류단 전압 간접 제어방법이다.

4.1 직류단 전압 직접 제어

직류단 전압 직접 제어는 그림 11과 같이 기존의 커 패시터 전압 제어기와 동일하며 직접 획득한 직류단 전 압을 사용한다. 그러나 한 스위칭 주기에 두 번 있는 암 단락으로부터 영전압 센싱을 피하기 위해 아날로그 필 터를 추가해야 하고 암 단락 비 변동에 따른 직류단 전 압 변동 폭이 커패시터 전압 변동 폭보다 크기 때문에 제어기 부담이 크다.

4.2 직류단 전압 간접 제어

직류단 전압 간접제어는 그림 12에서 보이는 것처럼 임피던스 네트워크의 전압 관계 식 (9)에 따라 직류단 전압을 계산하여 사용한다. 식 (9)는 식 (4)를 v_{C2} 에 관 하여 정리하여 식 (6)에 대입한 다음 v_{C1} 에 관하여 정리 하면 유도할 수 있다.

 $v_{C1}^* = (v_{PV} + v_{PN}^*)/2$

직류단 전압 간접제어는 아날로그 필터가 필요하지 않으며 최대 전력점 추적 시에도 직류단 전압을 변동 없이 일정하게 유지할 수 있다. 암 단락 비에 대한 선형 제어가 가능하고 상대적으로 전압변동이 작은 커패시터 전압을 제어하기 때문에 제어기 부담이 줄어든다. 또한 커패시터 C_2 전압과 함께 커패시터 C_1 전압도 최대 전 력점 추적에 기여하기 때문에 최대 전력점 추적 속도가 빠르다.

5. 시뮬레이션 결과

PSIM을 이용하여 10 kW 용량의 시스템을 모델링하 고 커패시터 전압 제어, 직류단 전압 직접 제어, 그리고

Fig. 11 Direct control of DC-link voltage v_{PN} .

Fig. 12 Indirect control of DC-link voltage v_{PN} .

직류단 전압 간접 제어 시 특성을 시뮬레이션 하였다. 그림 5의 전압 제어기는 1 ms마다 실행되며 제어 주 파수대역은 300 rad/s, 이득 값은 약간의 조절을 통해 각 각 k_v=0.0673 k_i=1.37을 사용하였다.

전류 제어기의 실행주기는 100μs 이고 제어 주파수대 역은 3000 rad/s이며 이득 값은 각각 k_p=1.8329 k_i=1292.1 을 사용하였다. 또한 고조파 보상을 위해 병렬로 추가한 공진제어기의 제어 주파수대역은 전류 제어기의 6배이 고 이득 값은 전류 제어기의 적분 이득의 1/3값을 취하 였다. P&O법에 사용된 암 단락 지령 변화량(Δv)은 최 대 전력점으로 수렴하는 전력 P의 변화량에 비례하여 감소하며 최대 15 V씩 증감한다. 실행주기는 전류 제어 기와 전압 제어기의 간섭을 피하기 위해 300 ms의 속도 로 동작시킨다. 또한 식 (10)은 직류단 직접 제어를 위 해 전압 센싱회로에 추가한 저역 통과 필터의 전달함수 로 차단주파수는 3 kHz이며 저항은 12 kΩ이며 커패시터 는 3 nF이다.

$$T(s) = \frac{\left(\frac{1}{\sqrt{2}RC}\right)^2}{s^2 + \sqrt{2}\left(\frac{1}{\sqrt{2}RC}\right)s + \left(\frac{1}{\sqrt{2}RC}\right)^2}$$
(10)

그림 13은 커패시터 전압 제어로 지령 전압을 450 V 로 선정했을 때이다. 위에서부터 계통 3상 주입 전류, 암 단락 지령, 각 부분의 전압, 태양광 어레이 전력 순 이다. 0.25 초까지 암 단락 없이 전압제어를 수행하고 0.25 초부터 최대 전력점 추적이 시작되도록 하였다. 커 패시터 전압이 일정한 반면 태양광 어레이 전압은 최대 전력점을 추적하며 감소하고 직류단 전압은 증가하는 것을 볼 수 있다.

그림 14는 시행착오를 통해 커패시터 전압 지령을 430 V로 수정하여 직류단 전압이 최대 전력점에서 450 V를 유지하도록 했을 때의 특성이다. 수정된 전압 지령 에 따라 0.25 초까지 최대 전력과 근사한 전력을 출력하 고 있으며 이후 암 단락을 통해 최대 전력점을 추적한 다. 이미 최대 전력점 근처에서 동작하고 있었기 때문에

지만 직류단 전압이 암 단락 비에 따라 변하게 된다. 그림 15는 직류단 전압 직접 제어이다. 전압 지령은 450 V이고 역시 0.25 초까지 암 단락 없이 제어하였기 때문에 지령을 수정하기 전의 커패시터 전압 제어와 동

암 단락 비는 이전보다 작고 태양광 어레이 전압은 최 대 전력점에 빨리 도달하였다. 이와 같이 커패시터 전압 제어를 통한 최대 전력점 추적은 지령 전압 수정을 통 해 시스템의 전압 스트레스와 암 단락 비를 줄일 수 있

일한 결과를 보인다. 암 단락 비가 증가함에 따라 태양 광 어레이 출력 전압은 감소하여 최대 전력점에 이르러 정상상태를 유지한다. 직류단 전압은 지령 전압과 같은 450 V를 유지하는 것을 볼 수 있고 수정된 지령을 사용 한 커패시터 전압 제어와 같이 암 단락비가 작다. 직류 단 전압은 저역 통과 필터를 거친 값이다.

그림 16은 직류단 전압 간접 제어 결과이다. 직류단 전압을 획득하기 위해 필터를 설치하지 않았음에도 불 구하고 직접 제어와 비슷한 성능을 보인다.

5. 실험 결과

실험을 위하여 그림 17과 같이 10kW용량의 시스템 을 설계/제작하였다. 스위칭 노이즈를 최소화하고 회로 구성을 최적화하기 위해 PCB형태로 제작된 전력회로에 임피던스 네트워크와 모듈형 IGBT가 연결된다. 실험에 사용된 입력 전원은 그린파워의 태양광 시뮬레이터로 태양광 어레이의 개방전압이 680 V, 단락 전류는 20 A까 지 설정할 수 있으며, 최대 용량은 10 kW이다. 실험과 관련된 각종 사양은 표 1과 같다.

암 단락 비를 0.1, 인덕터 전류 리플비를 0.1, 커패시 터 전압 리플비를 0.001로 설정하고 스위칭 주기를 100 μs로 하여 임피던스 네트워크를 설계하였다^[14].

IGBT 출력은 LCL필터를 거쳐 계통으로 직접 연결되 고 병렬로 저항부하가 연결되어있다. LCL필터는 참고문 헌 [15]에서 제시한 방법으로 설계하였다.

그림 18은 출력 전류의 FFT 분석 파형으로 공진제어 기에 의한 저차 고조파 보상을 보여준다. 5고조파의 경 우 고조파 보상 전 약 650 mA로 기본파에 비해 2.5% 크기를 보이나 보상 후 약 75 mA로서 0.3%로 낮아졌 다. 7 고조파 역시 현저히 줄어들었다.

그림 19는 태양광 시뮬레이터의 모니터링 파형이다. 상단 그림은 태양광 어레이의 특성곡선을 나타내고 있 는데 정상상태에 도달하여 최대 전력점에서 동작하고 있음을 볼 수 있다. 하단 그림은 커페시터 전압 제어를 통한 최대 전력점 추적 제어와 계통 주입 전류 제어가 수행될 때 실시간으로 30초간의 전압, 전류, 전력 파형 을 나타낸 것이다. 개방전압을 유지하다가 스위칭 신호 를 인가하여 전압 제어를 2초간 수행한다. 그 후 암 단 락에 의해 최대 전력점 추적제어가 시작되어 약 3초 후 최대 전력점에 도달하였다.

그림 20은 최대 전력점에 도달하여 정상상태로 동작 할 때 오실로스코프를 통해 측정한 파형으로 계통 주입 전류와 태양광 어레이 전압, 커패시터 전압, 직류단 전 압을 보여주고 있다. 계통 주입 전류는 깨끗한 정현파로 THD 가 1.95% 이고 커패시터 전압은 450 V로 제어되 며 태양광 어레이 전압은 약 50 V낮은 400 V로 최대 전 력점에서 동작하고 있다. 직류단 전압은 암 단락에 의해 주기적으로 전압이 0 V로 떨어지고 최대 전압은 약 500V로

Table 1 Parameters and ratings of the system

P_{rated} of System	10 k W	$P_{\rm max}$ of PV	7.4kW
V _{OC}	508 V	I_{SC}	20A
V_{MPP}	404 V	I_{MPP}	18.4 <i>A</i>
$L_1 = L_2$	$500\mu H$	$C_{1} = C_{2}$	$200\mu F$
L_i	$500\mu H$	C_{f}	$15\mu F$
L_g	$150\mu H$	R_d	1Ω

Fig. 17 Construction of the system

Fig. 18 Comparison between before and after compensation (current : 500 mA/div, frequency : 100 Hz/div)

Fig. 19 PV simulator waveform of monitoring system when the system is operating at maximum power point

Fig. 20 Grid current and voltages of impedance network when the system is operating at the maximum power point (voltage : 100 V/div, current : 10 A/div)

Fig. 21 Current and Voltages of impedance network when the system is operating at the maximum power point (voltage : 100 V/div, current : 10 A/div)

제어전압보다 50 V높게 나타나고 있다. 그림 21은 각 부 분의 전압 파형과 함께 인덕터 전류 파형을 나타낸 것 으로 암 단락 시 인덕터는 증가하고 활성상태에서 인덕 터 전류가 감소하는 것을 볼 수 있다. 전류 불연속 구 간이 발견되지 않는 것으로 미루어 임피던스 네트워크 파라미터 설계가 제대로 되었음을 알 수 있다.

그림 22부터 그림 28까지는 전압제어에 따른 특성을 비교한 파형으로 20 초간 측정한 것이다. 그림 22는 커 패시터 전압 제어를 사용한 시스템의 결과 파형으로 앞 서 설명한 것과 같이 태양광 어레이 전압과 커패시터 전압, 직류단 전압이 모두 450 V로 제어가 되다가 암 단 락 비가 증가하게 되면 커패시터만 전압만 일정하게 제 어되고 직류단 전압은 증가하여 약 500 V, 태양광 어레 이 출력 전압은 감소하여 최대 전력점인 400 V가 된다. 정상상태에서 계통 주입 전류 THD는 2.38%이다.

그림 23과 24는 커패시터 전압 지령을 수정하여 직류 단 전압이 450 V가 되도록 실험한 결과 파형으로 각각 오실로스코프 측정파형과 모니터링 화면이다. 시스템 구 성 요소의 전압 스트레스가 줄어들고 빠른 최대 전력점 수렴을 보이며 전류 THD는 2.31%이다. 직류단 전압이 암 단락 비 변화에 따라 같이 변한다.

그림 25와 26은 직류단 전압 직접 제어를 통한 결과 파형이다. 커패시터 전압 제어와 달리 암 단락 지령 변 화에도 불구하고 직류단 전압이 450 V를 유지하고 있고 태양광 어레이 전압은 최대 전력점을 추적하고 있다. 커 패시터 전압은 약 425 V로 감소하였으며 계통 전류의 THD는 2.96%이다.

Fig. 23 Current and voltage waveforms using a capacitor voltage control($v_{C1}^{*} = 430 V$) (voltage : 25 V/div, current : 10 A/div, time : 2 s/div)

Fig. 24 PV simulator waveform of monitoring system when the system is operating at maximum power point

Fig. 25 Current and voltage waveforms using a DC-link voltage direct control (voltage : 25 V/div, current : 10 A/div, time : 2 s/div)

Fig. 26 PV simulator waveform of monitoring system when the system is operating at maximum power point

Fig. 27 Current and voltage waveform using a DC-link voltage indirect control (voltage : 25 V/div, current : 10 A/div, time : 2 s/div)

Fig. 28 PV simulator waveform of monitoring system when the system is operating at maximum power point

그림 27과 28은 직류단 전압 간접제어를 수행한 결과 파형이다. 역시 직류단 전압이 암 단락 비 변동에도 불 구하고 직령전압 450 V를 유지하고 있으며 계통 전류 THID는 2.32 %이다.

5. 결 론

본 논문에서는 QZSI를 이용한 계통연계형 태양광 발 전시스템을 구현하여 태양광 어레이 특성 갖는 태양광 시뮬레이터를 전원으로 하고 실제 계통에 연결하여 실 험하였다. 전력품질 향상을 위한 방안을 제시하여 시뮬 레이션과 실험으로 개선된 성능을 증명하였다.

QZSI시스템은 입력 전류가 연속이며 리플을 낮게 설 계할 수 있으므로 태양광 어레이 출력 단에 큰 용량의 필터 커패시터를 설치할 필요가 없고 공통 접지를 제공 하기 때문에 제작이 용이하다. 또한 ZSI에 비해 커패시 터와 다이오드의 내압이 낮아져 구조와 제어 면에서 태 양광 발전 시스템에 적합하다. 승압비가 2 이하에서는 2 단 구성 시스템에 비해 효율이 높기 때문에 MPPT를 위해 보통 1.25 이하의 승압비를 사용하는 태양광 시스 템에서는 더 효율적이다.

계통 주입 전류의 THD를 저감하기 위해서 인버터 출력단과 계통 사이에 LCL 필터를 설치하였으며, 배전 전압에 존재하는 5, 7고조파 보상을 위해서 주 전류제어 기와 병렬로 동기좌표계 공진제어기를 사용하였다.

통상 ZSI나 QZSI는 암 단락 비를 증가시키면 전압 이득이 증가하므로 입력 전압을 승압하는 용도로 암 단 락 비를 조절하는데, 커패시터 전압이나 직류단 전압을 일정하게 제어하는 경우 암 단락 비가 증가하면 입력 전압이 감소하게 되므로 태양광 발전 시스템에 적용하 면 암 단락 비를 조절하여 최대 전력점 추적 제어에 사 용할 수 있다. P&O법의 간단한 수정으로 MPPT를 위 한 암 단락 지령을 발생시키고 3상 전압 지령과 함께 PWM신호를 발생시키는 방법을 제시하였다.

일반적으로 계통에 주입되는 유효전력 지령(또는 d축 전류 지령)은 커패시터 전압제어기의 출력에 의해서 결 정되는데 커패시터 전압 제어기 대신에 직류단 전압 제 어기를 사용하면 직류단 전압을 일정하게 유지할 수 있 어 전류 품질에 영향을 주는 맥동성분을 억제할 수 있 다. 또한 직류단 전압제어의 경우 암 단락 비가 작기 때 문에 시스템 손실을 줄일 수 있고 구성 소자의 전압 스 트레스도 줄일 수 있다.

References

- Fang Zheng Peng, "Z-source inverter," *IEEE Transactions on Industry Applications*, Vol. 39, No. 2, pp. 504 510, Mar. 2003.
- [2] Yi Huang and Fang Z. Peng, "Survey of the Power Conditioning System for PV Power Generation," *PESC* '06 (37th IEEE Power Electronics Specialist Conf.), pp. 1–5, Jun. 2006.
- [3] Joel Anderson and Fang Z. Peng, "Four Quasi-Z-Source Inverters," PESC '08 (39th IEEE Power Electronics Specialist Conf.), pp. 2743–2749, Jun. 2008.
- [4] Miaosen Shen, lan Joseph, Jin Wang, and Fang Z. Peng, "Comparison of Traditional Inverters and Z-Source Inverter for Fuel Cell Vehicles," *IEEE Transactions on Power Electronics*, Vol. 22, No. 4, pp. 1453–1463, Jul. 2007.
- [5] M. Hanif, M. Basu, and K. Gaughan, "Understanding the operation of a Z-source inverter for photovoltaic application with a design example," *IET Electric Power Applications*, Vol. 4, No. 3, pp. 278–287, Mar. 2011.
- [6] Richard Badin, Yi Huang, Fang Z. Peng, and Heung-Geun Kim, "Grid Interconnected Z-Source PV

System," *PESC '07 (38th IEEE Power Electronics Specialist Conf.)*, pp. 2328 - 2333, Jun. 2007.

- [7] Yi Huang, Miaosen Shen, Fang Z. Peng, and Jin Wang, "Z-Source Inverter for Residential Photovoltaic Systems," *IEEE Transactions on Power Electronics*, Vol. 21, No. 6, pp. 1776–1782, Nov. 2006.
- [8] Yuan Li, Shuai Jiang, Jorge G. Cintron-Rivera, and Fang Z. Peng, "Modeling and Control of Quasi-Z-Source Inverter for Distributed Generation Applications," *IEEE Transactions on Industrial Electronics*, Vol. 60, No. 4, pp. 1532–1541, Apr. 2013.
- [9] Jong-Hyoung Park, Heung-Geun Kim, Eui-Cheol Nho, and Tae-Won Chun, "Power Conditioning System for a Grid Connected PV Power Generation Using a Quasi-Z-Source Inverter," *Journal of Power Electronics*, Vol. 10, No. 1, pp. 79–84, Jan. 2010.
- [10] Yushan Liu, Haitham Abu-Rub, Baoming Ge, Fang Z. Peng, and Fernando J. T. E. Ferreira, "An Improved MPPT Method for Quasi-Z-Source Inverter Based Grid-Connected Photovoltaic Power System," *ISIE2012* (21th IEEE International Symposium on Industrial Electronics), pp. 1754–1758, May 2012.
- [11] Haitham Abu-Rub, Atif Iqbal, Sk. Moin Ahmed, Fang, Z. Peng, and Ge Baoming, "Quasi-Z-source Inverter-Based Photovoltaic Generation System With Maximum Power Tracking Control Using ANFIS," *IEEE Transactions on Sustainable Energy*, Vol. 4, No. 1, pp. 11–20, Jan. 2013.
- [12] Chandana jayampathi Gajanayake, Mahinda Vilathgamuwa, Poh Chiang Loh, Remus Teodorescu, and Frede Blaabjerg, "Z-Source-Inverter-Based Flexible Distributed Generation System Solution for Grid Power Quality Improvement," *IEEE Transactions* on *Energy Conversion*, Vol. 24, No. 3, pp. 695–704, Sep. 2009.
- [13] Sang-Hyup Han, Jong-Hyoung Park, Heung-Geun Kim, Honnyong Cha, Tea-Won Chun, and Eui-Cheol Nho, "Dead Time Compensation of Grid-connected Inverter Using Resonant Controller," *Journal of KIPE*, Vol. 16, No. 6, pp. 569–576, Dec. 2011.
- [14] Jong-Ho Yang, Tae-Won Chun, Hong-Hee Lee, Heung-Geun Kim, and Eui-Cheol Nho, "Designing Impedance Network at Quasi Z-Source Inverters by Considering ESR in the Capacitor," *Journal of KIPE*, Vol. 17, No. 5, pp. 453-460, Oct. 2012.
- [15] Jong-Hyoung Park, Min-Hun Chi, Heung-Geun Kim, Tae-Won Chun, and Eui-Cheol Nho, "LCL Filter Design for Grid-connected PCS Using Total Harmonic Distortion and Ripple Attenuation Factor," *Journal of KIPE*, Vol. 15, No. 3, pp. 235–243, June 2010.

박종형(朴鐘炯)

1979년 4월 3일생. 2006년 영남대 전기공학 과 졸업. 2008년 경북대 대학원 전자전기컴 퓨터학부 졸업(석사). 2013년 동 대학원 전 자전기컴퓨터학부 졸업(공박). 2014년 현재 효성중공업 연구소 근무.

<u>김흥근(金興根)</u>

1956년 4월 24일생. 1980년 서울대 전기공 학과 졸업. 1982년 동 대학원 전기공학과 졸업(석사). 1988년 동 대학원 전기공학과 졸업(공박). 1990년~1991년 미국 Univ. of Wisconsin-Madison 방문교수. 2006년~2007

년 미국 Michigan State University 방문교수. 2013년 당 학회 회 장 역임. 경북대 IT대학 전기공학과 교수. 경북대 산학연구처장.

노의철(魯義哲)

1960년 8월 2일생. 1984년 서울대 공대 전기 공학과 졸업. 1986년 한국과학기술원 전기 및 전자공학과 졸업(석사). 1991년 동 대학원 졸 업(공박). 1997년~1998년 미국 Univ. of Wisconsin-Madison 방문교수. 2005년~2006년

미국 University of California-Irvine 방문교수. 1995년~현재 부경대 전기공학과 교수. 당 학회 부회장.

<u>전태원(全泰園)</u>

1959년 1월 30일생. 1981년 부산대 전기공학 과 졸업. 1983년 서울대 대학원 전기공학과 졸업(석사). 1987년 동 대학원 전기공학과 졸업(공박). 2005년~2006년 버지니아공대 방문교수. 울산대 전기전자정보 시스템공학 협력부회장.

부 교수. 당 학회 협력부회장.

차헌녕(車憲寧)

1972년 10월 17일생. 1999년 경북대 전자공 학과 졸업. 2001년 동 대학원 전자공학과 졸 업(석사). 2001년~2003년 (주)피에스텍 근무. 2004년~2005년 한국전기연구원 근무. 2009 년 미국 Michigan State University 전기공학

과 졸업(공박). 2010년~2011년 한국전기연구원 스마트그리드연 구본부 선임연구원. 현재 경북대 에너지공학부 조교수. 당 학 회 JPE 편집위원.