• Title/Summary/Keyword: DC microgrid system

Search Result 69, Processing Time 0.026 seconds

Development of DC Microgrid Management System Based on Intelligent Agent Systems (지능형 에이전트 기반의 직류 마이크로그리드 관리시스템 개발)

  • Chio, Min-Seok;Hai, Trinh Phi;Cho, Hector;Chung, Il-Yop;Kim, Ju-Yong;Cho, Jin-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.517-518
    • /
    • 2015
  • 본 논문에서는 저압 직류(LVDC) 마이크로그리드(Microgrid)의 배전가능거리와 분산전원 수용률을 증대하기 위한 지능형 에이전트 기반의 전압 제어 기법에 대해서 설명한다. 제안하는 방법은 분산전원에 설치된 지능형 제어노드에서 자율적인 전압, 전류, 전력측정을 수행하고 이러한 데이터를 바탕으로 전압제어 민감도를 산출하며 실시간 모니터링 데이터와 함께 중앙 관리시스템으로 전송된다. 중앙 관리시스템은 교류계통과 연계되는 주(Main) AC-DC 전력변환기와 각 분산 전원과의 협조제어를 통해 마이크로그리드의 전압을 실시간으로 제어한다. 제안하는 전압제어 원리의 구현을 위해 본 논문은 지능형 에이전트 기반의 직류 마이크로그리드 관리시스템에 대해서 설명한다. 개발된 마이크로그리드 관리시스템은 실시간 OS를 탑재한 범용 임베디드 시스템 하드웨어로 구성되며 이더넷 통신을 이용하여 멀티-에이전트 네트워크를 구성한다.

  • PDF

Complementary Power Control of the Bipolar-type Low Voltage DC Distribution System

  • Byeon, Gilsung;Hwang, Chul-Sang;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Jong-Yul;Kim, Kisuk;Ko, Bokyung;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.786-794
    • /
    • 2015
  • In this paper, a new power control strategy for the bipolar-type low voltage direct current (LVDC) distribution system is being proposed. The dc distribution system is considered as an innovative system according to the increase of dc loads and dc output type distribution energy resources (DERs) such as photovoltaic (PV) systems and energy storage systems (ESS). Since the dc distribution system has many advantages such as feasible connection of DERs, reduction of conversion losses between dc output sources and loads, no reactive power issues, it is very suitable solution for new type buildings and residences interfaced with DERs and ESSs. In the bipolar-type, if it has each grid-interfaced converter, both sides (upper, lower-side) can be operated individually or collectively. A complementary power control strategy using two ESSs in both sides for effective and reliable operation is proposed in this paper. Detailed power control methods of the host controller and local controllers are described. To verify the performances of the proposed control strategy, simulation analysis using PSCAD/EMTDC is being performed where the results show that the proposed strategy provides efficient operations and can be applied to the bipolar-type dc distribution system.

Development of Hardware In-the-Loop Simulation System for Testing Power Management of DC Microgrids Based on Decentralized Control (분산제어 기반 직류 마이크로그리드 전력관리시스템의 HIL 시뮬레이션 적용 연구)

  • To, Dinh-Du;Le, Duc-Dung;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.191-200
    • /
    • 2019
  • This study proposes a hardware-in-the-loop simulation (HILS) system based on National Instruments' PXI platform to test power management and operation strategies for DC microgrids (MGs). The HILS system is developed based on the controller HIL prototype, which involves testing the controller board in hardware with a real-time simulation model of the plant in a real-time digital simulator. The system provides an economical and effective testing function for research on MG systems. The decentralized power management strategy based on the DC bus signaling method for DC MGs has been developed and implemented on the HILS platform. HILS results are determined to be similar to those of the off-line simulation in PSIM software.

Grid-connected DC Microgrid verification operating at Korea Site (국내 사이트의 계통연계형 DC 마이크로그리드 실증 운전)

  • Yu, seungyeong;Yang, daeki;Jung, Se hyung;Kim, minkook;Oh, Seong Jin;CHOI, SEWAN
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.346-347
    • /
    • 2018
  • 본 논문은 Grid, PV(Photovoltaic), BESS(Battery Energy Stroage System), DC Load로 구성된 DC 마이크로그리드를 국내 사이트에 적용한 사례 및 실증 결과에 대해 기술하고 있다. 또한 DC 마이크로그리드 시스템의 구성과 함께 Destin Power사가 개발하여 적용한 125kW급 PCS(Power Conditioning System)의 기술을 소개하였다. 마지막으로 시스템의 운영 타당성을 체계적으로 검증하기 위해 진행했던 시험 항목과 결과를 서술하였으며 그 결과를 바탕으로 DC 마이크로 그리드 시스템 실증을 검증하였다.

  • PDF

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

A Cascaded Hybrid Multilevel Inverter Incorporating a Reconfiguration Technique for Low Voltage DC Distribution Applications

  • Khomfoi, Surin
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.340-350
    • /
    • 2016
  • A cascaded hybrid multilevel inverter including a reconfiguration technique for low voltage dc distribution applications is proposed in this paper. A PWM generation fault detection and reconfiguration paradigm after an inverter cell fault are developed by using only a single-chip controller. The proposed PWM technique is also modified to reduce switching losses. In addition, the proposed topology can reduce the number of required power switches compared to the conventional cascaded multilevel inverter. The proposed technique is validated by using a 3-kVA prototype. The switching losses of the proposed multilevel inverter are also investigated. The experimental results show that the proposed hybrid inverter can improve system efficiency, reliability and cost effectiveness. The efficiency of proposed system is 97.45% under the tested conditions. The proposed hybrid inverter topology is a promising method for low voltage dc distribution and can be applied for the multiple loads which are required in a data center or telecommunication building.

DC-Voltage Regulation for Solar-Variable Speed Hybrid System

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.123-124
    • /
    • 2015
  • Recently interest on DC systems has been grown up extensively for more efficient connection with renewable energy. During the operation, there happens DC_link voltage variations. This paper focuses on the DC voltage stabilization applied in stand-alone DC microgrid to improve the system stability by keeping the voltage within limits. Batteries and a variable speed diesel generator cover the shortage of power after all available renewable energy is consumed. Load shedding or power generation reduction should automatically takes place if the maximum tolerable voltage variation is exceeded. PSIM based simulation results are presented to evaluate the performance of the proposed control measures.

  • PDF

A Study on the Fault Tolerance and High Efficiency Control of 4 Leg DC/DC Converter for Battery Energy Storage System in Standalone DC Micro-grid (독립형 DC마이크로그리드 내 BESS용 4 LEG DC/DC 컨버터의 고장허용 및 고효율 제어에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Cha, Dae-Seak;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1239-1248
    • /
    • 2018
  • This paper proposes a fault tolerant and high efficiency operation algorithm for a 4 LEG DC/DC converter for a battery energy storage system(BESS) forming a main power source in a standalone DC micro grid. The BESS for the main power supply in the stand-alone DC micro-grid is required to operate at high speed according to fault tolerant control and load by operating at all times. Fault-tolerance control changes the short-circuit fault to an open-circuit fault by using a fuse in case of leg fault in 4 legs, and operates stably through phase shift control. In addition, considering the loss of the power semiconductor, the number of LEG operation is adjusted to operate at high efficiency in the full load region. In this paper, fault tolerant control and high efficiency operation algorithm of DC/DC converter for BESS in standalone DC micro grid is presented and it is proved through simulation and experiment.