• Title/Summary/Keyword: DC feeding system

Search Result 66, Processing Time 0.021 seconds

Reliability Modeling of Direct Current Power Feeding Systems for Green Data Center

  • Choi, Jung Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.704-711
    • /
    • 2013
  • Data center is an information hub and resource for information-centric society. Since data center houses hundreds to ten thousands servers, networking and communication equipment, and supporting systems energy saving is one of the hottest issues for green data center. Among several solutions for green data center this paper introduces higher voltage direct current (DC) power feeding system. Contrary to legacy alternating current (AC) power feeding system equipped with Uninterruptible Power Supply (UPS), higher voltage DC power feeding system is reported to be a more energy efficient and reliable solution for green data center thanks to less AC/DC and DC/AC conversions. Main focus of this paper is on reliability issue for reliable and continuous operation of higher voltage DC power feeding system. We present different types of configuration of the power feeding systems according to the level of reliability. We analyze the reliability of the power feeding systems based on M/M/1/N+1/N+1 queueing model. Operation of the power feeding system in case of failure is also presented.

A Control Technique for the Rail Potential Limit Device in DC Feeding System (직류급전계통에서 레일전위상승제한장치의 동작제어기법)

  • Min, Myung-Hwan;Jung, Ho-Sung;Park, Young;Chang, Sang-Hoon;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.485-490
    • /
    • 2012
  • Nowadays, in metropolitan railroad, DC feeding system is being generally applied. In order to reduce damage of electro-chemical corrosion caused by stray current and leakage current, in DC feeding system, rail is used as negative-polarity return conductor for traction load current. However, it has problem of rail potential increase and there are no adequate measures to prevent it in domestic. The rise of rail potential leads to damage for human and equipments. To solve the problems, this paper presents fundamental theory and related standards about rail potential increase. And then, we analyzed field testing data and simulated a variety of operations by using PSCAD/EMTDC as an analysis program of power system. In addition, this paper suggests rail potential limit device and addresses how to the device. To verify the effect, simulation of DC feeding system before and after the application of the device is carried out in various cases.

Considering design parameters in terms of rail potential and leakage current in DC feeding system (직류급전시스템의 레일전위와 누설전류 관점에서의 설계 파라미터 연구)

  • Han, Moon-Seob;Jung, Ho-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.236-241
    • /
    • 2007
  • DC feeding system is mainly floating but the rail potential and the leakage current are created because of long parallelism between rails and ground. Rail potential causes electric shock to human and leakage current causes electrolytic corrosion to nearby the buried metals. Therefore the design technologies to reduce, protect and monitor these effects are important recent DC feeding system. Normally during designing DC feeding system in terms of rail potential and leakage current, there are about 10 parameters. Four design parameters among those is analysed based on propagation theory that is utilized in order to simulate grounding system.

  • PDF

An Analysis on Rise of Rail Potential And A Study on Control Method for It in DC Feeding System (직류급전계통에서의 레일전위 상승 분석 및 억제 방안 연구)

  • Min, Myung-Hwan;Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.680-685
    • /
    • 2011
  • Nowadays, in metropolitan railroad, DC feeding system is being generally applied. In order to reduce damages of electro-chemical corrosion caused by stray current and leakage current, in DC feeding system, rail is used as negative-polarity return conductor for traction load current. However, it has problem of rail potential increase and there are no adequate measures to prevent it in domestic. In this paper, we presented fundamental theory and related standards about rail potential increase. And then, we analyzed field testing data and simulated a variety of operations by using PSCAD/EMTDC as an analysis program of power system. In addition, voltage control device is suggested to prevent accidents caused by rail potential increase.

Inductive Disturbance Reduction Method for Electric Railway (전기철도해서의 유도장해 경감책에 관한 연구)

  • Lee, Kyo-Sung;Kim, Do-Hun;Lee, Yong-Jae;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.369-371
    • /
    • 2002
  • The railway power feeding system is divided into AC power feeding system and DC power feeding system. In downtown area. DC power feeding system is used and AC power feeding system is used in intercity railway system. AC power feeding system raises a inductive disturbance that is divided into electrostatic induction and electromagnetic induction. Especially, it has a bad effect on communication lines. So inductive disturbance reduction method has been adopted in many system. In this paper, we deals with the inductive disturbance reduction method of railway power feeding system and of sides affected by inductive disturbance.

  • PDF

An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System (고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Young;Cho, Sanghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

An Experimental Study on Operation Setting Optimization of Circuit Breaker for Improving Safety on DC Railroad Feeder System (직류철도 급전계통의 안전성 향상을 위한 차단기 동작 최적 설정의 실험적 고찰)

  • Lee, Jae-Bong;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.526-531
    • /
    • 2016
  • This paper presents an experimental study on the optimal settings for the selected DC fault relay (50F) to improve the operating performance for the high-speed circuit breaker on DC feeding system which ensure safety within rolling stock maintenance depot. In this study, current supplied to overhead contact wire was calculated on 1 ms interval to analyze the correction values of DC fault selective relay for the operation of current supply cutout. Particularly, standards for the accurate detection of accidents between an electric railway vehicle and the electric power facilities are shown by investigating the optimal correction values for detection of fault current, and the results indicated that it takes about 213 ms for the DC fault selective relay(50F) to fully open. In the future, the correction values of DC fault selective relay suggested in this paper will be used as the reference values of protective relay for the safe operation of DC electric railroad system such as urban railway.

A Study on an infuence of power quality problem on the electric train at dead section (절연구간에서의 전력품질 문제가 전기철도에 미치는 영향에 관한 연구)

  • Lee, Bong-Yi;Kim, Jae-Chul;Moon, Jong-Fil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.92-94
    • /
    • 2005
  • In this paper, when electric train is in dead-section the effect on electric train system was dealt. The feeding system of electrical railway is AC or DC. When the electric train is passed AC feeding system to DC, vice versa or phase is changed in between AC feeding systems, there is a dead section. A dead section usually makes the electrical system complex md may have an adverse effect on the electrical system inside the train. Accordingly, it is important to analyze the effect on trains in dead-section. Modeling an electric train and simulation using PSCAD/EMTDC was accomplished to analyze how power quality problem such as inverter switching surge is propagated to electric train through the feeding line, railway, pantograph.

  • PDF

Modelling and Stability Analysis of AC-DC Power Systems Feeding a Speed Controlled DC Motor

  • Pakdeeto, Jakkrit;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1566-1577
    • /
    • 2018
  • This paper presents a stability analysis of AC-DC power system feeding a speed controlled DC motor in which this load behaves as a constant power load (CPL). A CPL can significantly degrade power system stability margin. Hence, the stability analysis is very important. The DQ and generalized state-space averaging methods are used to derive the mathematical model suitable for stability issues. The paper analyzes the stability of power systems for both speed control natural frequency and DC-link parameter variations and takes into account controlled speed motor dynamics. However, accurate DC-link filter and DC motor parameters are very important for the stability study of practical systems. According to the measurement errors and a large variation in a DC-link capacitor value, the system identification is needed to provide the accurate parameters. Therefore, the paper also presents the identification of system parameters using the adaptive Tabu search technique. The stability margins can be then predicted via the eigenvalue theorem with the resulting dynamic model. The intensive time-domain simulations and experimental results are used to support the theoretical results.

칼라 비데오 프린터의 Paper Feeding 제어 시스템 설계

  • 신용후
    • The Magazine of the IEIE
    • /
    • v.18 no.6
    • /
    • pp.39-46
    • /
    • 1991
  • 칼라 비데오 프린터의 paper feeding 제어 시스템을 DC motor를 이용하여 설계하였다. 목표 spec을 만족하기 위한 H/W를 구성한 후 digital control 이론을 적용하여 loop gain K를 찾고 위상계와 속도계 gain을 결정하는 방법을 설명하였다. 한편 DC analysis를 통하여 앞에서 결정된 gain으로 설계할 경우 parameter variation에 의해 동작점이 벗어나는 것을 확인하고 system 구성 및 gain 등을 조정하여 동작점의 안정화를 가져올 수 있었다. 또한 DC analysis를 함으로써 부품의 공차를 설계할 수 있었다.

  • PDF