• Title/Summary/Keyword: DC Power service

Search Result 43, Processing Time 0.026 seconds

A Contactless Power Supply for a DC Power Service

  • Kim, Eun-Soo;Kim, Yoon-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.483-491
    • /
    • 2012
  • It is expected that, in the future, DC power service will be widely used for photovoltaic home power generation systems, since DC consuming devices are ever increasing. Instead of using multiple converters to convert DC to AC and then AC to DC, the power service could solely be based on DC. This would eliminate the need for converters, reducing the cost, complexity, and possibly increasing the efficiency. However, configuration of direct DC power service with mechanical contacts can cause spark voltage or an electric shock when the switch is turned on and off. To solve these problems, in this paper, a contactless power supply for a DC power service that can transfer electric power produced by photovoltaics to the home electric system using magnetic coupling instead of mechanical contacts has been proposed. The proposed system consists of a ZVS boost converter, a half-bridge LLC resonant converter, and a contactless transformer. This proposed contactless system eliminates the use of DC switches. To reduce the stress and loss of the boost converter switching devices, a lossless snubber with coupled inductor is applied. In this paper, a switching frequency control technique using the contactless voltage sensing circuit is also proposed and implemented for the output voltage control instead of using additional power regulators. Finally, a prototype consisted of 150W boost converter has been designed and built to demonstrate the feasibility of the proposed contactless photovoltaic DC power service. Experimental results show that 74~83% overall system efficiency is obtained for the 10W~80W load.

DC Microgrid Operational Method for Enhanced Service Reliability Using DC Bus Signaling

  • Hwang, Pyeong-Ik;Jang, Gilsoo;Pyo, Gi-Chan;Han, Byung-Moon;Moon, Seung-Il;Ahn, Seon-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.452-464
    • /
    • 2015
  • This paper proposes a DC microgrid operational strategy and control method for improved service reliability. The objective is to supply power to as many non-critical loads as possible, while providing an uninterrupted power supply to critical loads. The DC bus signaling method, in which DC voltage is an information carrier, is employed to implement the operational strategy in a decentralized manner. During grid-connected operation, a grid-tied converter balances the power of the microgrid by controlling the DC voltage. All loads are connected to the microgrid, and operate normally. During islanded operation, distributed generators (DGs), a backup generator, or an energy storage system balances the power. However, some non-critical loads may be disconnected from the microgrid to ensure the uninterrupted power supply to critical loads. For enhanced service reliability, disconnected loads can be automatically reconnected if certain conditions are satisfied. Control rules are proposed for all devices, and detailed microgrid operational modes and transition conditions are then discussed. Additionally, methods to determine control parameter settings are proposed. PSCAD/EMTDC simulation results demonstrate the performance and effectiveness of the proposed operational strategy and control method.

High Efficiency Resonant Converter for Bidirectional Power Transfer (고효율 특성을 갖는 양방향 공진컨버터)

  • Park, Jun-Hyoung;Lee, Seung-Min;Kim, Eun-Soo;Hwang, In-Gab;Kong, Young Su
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.429-436
    • /
    • 2013
  • In this paper, For achieving the high gain and resonant characteristics in both of the power flow directions, a bidirectional resonant dc-dc converter with auxiliary switches is proposed. Auxiliary switches are connected in the primary and secondary side of the bidirectional resonant dc-dc converter, respectively. A 800W prototype bidirectional resonant dc-dc converter for interfacing the 400V DC buses in the energy storage system is built and tested to verify the validity and applicability of this proposed converter.

A Development of DC-DC Converter for the Reading Lamp of TGV-Korea (고속 철도(TGV-Korea) 조명용 DC-DC 컨버터의 개발)

  • 김성일;김희준;김희일
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.635-638
    • /
    • 1999
  • Manufacturing TGV-Korea, international standards and TGV-standards should be strictly applied in order to insure the normal operation and the safety of passengers in a train service. This paper presents a development of 800W DC-DC converter for the reading lamp of TGV-korea. The converter is designed for satisfying the regulations of international standards and TGV-standards regarding the burning-in test, the vibration test, the electro-magnetic emissions test, etc. As an experimental result, the maximum efficiency is obtained as 92.3[%] at normal input voltage and output power.

  • PDF

Stability Analysis of FCHEV Energy System Using Frequency Decoupling Control Method

  • Dai, Peng;Sun, Weinan;Xie, Houqing;Lv, Yan;Han, Zhonghui
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.490-500
    • /
    • 2017
  • Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system still has rapidity and reliability. The distributed power system (DPS) of EV requires DC-DC converters to achieve the desired voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of DPS. In this study, closed-loop impedances of interleaved half-bridge DC-DC converter and phase-shifted full-bridge DC-DC converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are provided to demonstrate the feasibility of the energy management system and the control method.

Analysis of the Output Ripple of the DC-DC Boost Charger for Li-Ion Batteries

  • Nguyen, Van-Sang;Tran, Van-Long;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.135-142
    • /
    • 2014
  • In the design of battery chargers, limiting the output ripple current according to the manufacturer's recommendation is important for reliable service and extended battery life. Ripple components can cause internal heating of the battery and thus reduce the service life of the battery. Care must be exerted in the design of the switching converter for the charge application through the accurate estimation of the output current ripple value. This study proposes a method to reduce the output current ripple of the converter and presents a detailed analysis of the output current ripple of the DC-DC boost converter to provide a guideline for the design of the battery charger.

A Analysis of DC Control Circuit Transient and a Study of Auxiliary Relay Design Compatability in the Power Plant (발전소 직류 제어회로 과도현상 분석 및 보조계전기 선정 적합성 검토)

  • Seon, Hyun-Gyu;Hong, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1948_1949
    • /
    • 2009
  • All the power generating station require dc auxiliary power systems to operate those dc components that must be available if a loss of ac power occur. Some examples of such components are auxiliary motors, circuit breakers, relays and solenoids. The dc source may be one common battery for both power and control or two separate batteries; one for power and another for control. Typically, a dc auxiliary power system is designed as an ungrounded system, instead of grounded system, so that a low-resistance ground fault on one of its two polarities will not affect the operation of the system, thus increasing system reliability and continuity of service. A ground detector should provide a high polarity-to-ground resistance so that a single ground fault occurring on the system will not affect the operation of that system. Sensitive relays have been known to energize momentarily while the cable and capacitive charge to ground shifts[1]. A power station had experienced this kind of incident and performed root cause analysis based on PC based simulation program known as PSpice. This simulation showed adapted relays on the system energize momentarily and design criteria on this relay should be corrected.

  • PDF

Bidirectional Resonant Converter with High Efficiency Characeristics (고효율 특성을 갖는 양방향 공진컨버터)

  • Park, J.H;Lee, S.M;Phum, S.;Jeon, H.S;Kim, E.S;Kong, Y.S
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.41-42
    • /
    • 2012
  • For achieving the high gain and resonant characteristics in both of the power flow directions, a bidirectional resonant dc-dc converter with auxiliary switches is proposed. Auxiliary switches are connected in the primary and secondary side of the bidirectional resonant dc-dc converter, respectively. A 1kW prototype bidirectional resonant dc-dc converter for interfacing the 400V DC buses in the energy storage system is built and tested to verify the validity and applicability of this proposed converter.

  • PDF

Fault Location Algorithm in a Two-ended Sources Transmission Line (양전원 송전선로의 고장점 표정 알고리즘)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • In order to service restoration and enhance power system reliability, a number of impedance based fault location algorithms have been developed for fault locating in a transmission line. This paper presents an advanced impedance-based fault location algorithms in a two-ended sources transmission line to reduce the DC offset error effects. This fault location algorithm uses of the GPS time synchronized voltage and current signals from the local and remote terminal. The algorithm uses an advanced DC offset removal filter. A series of test results using ATPdraw simulation data show the performance effectiveness of the proposed algorithm. The proposed algorithm is valid for a two-end sources transmission network.

A Study on Ground Fault Detecting System for DC Voltage Line in the Electric Power Plant (발전소 직류전압 전선로 접지검출시스템에 관한 연구)

  • Lee, H.K.;Kim, N.H.;Park, C.H.;Kim, T.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.754-757
    • /
    • 1995
  • This system can detect a ground fault point or a bad insulated line by measuring a power plant DC feeder insulation resistance at the uninterruptible power status. And when the power plant DC feeder with low frequency AC signal has a ground fault, this measuring system can keep recording of its ground fault current and phase checked by Z.C.T. Therefore the power plant could protect a unexpected service interruption.

  • PDF