• Title/Summary/Keyword: DC Power Supply

Search Result 969, Processing Time 0.031 seconds

A New ZVS Bi-directional CUK DC/DC Converter for a Car Dual Power Supply System (자동차 이중전원 시스템을 위한 새로운 ZVS 양방향 CUK DC/DC 컨버터)

  • Lee S. R.;Lee S. W.;Ko S. H.;Mun J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.355-358
    • /
    • 2004
  • Currently, to overcome the limit of a 14V power supply system and to enhance the stability of this system high and to make the fuel efficiency better, a research development of a 42V power supply system is actively the progress. As an intermediate step to change into an unity power supply system, a 42V/14V dual power supply system uses a DC/DC Converter as one of structure elements. Considering the main electric power sources in the next generation of the car is a 42V system a 14V power supply system has advantages as follows : In be managed efficiently and to increase the redundancy at start, to jump start with any vehicles, etc. We need the introduction of a hi-directional converter that can flow the energy each other in a dual 42V-l2V system. This paper proposed the ZVS hi-directional CUK DC/DC converter which decrease the weight with the size of the DC/DC Converter and minimize the loss when the switching happen. In this paper, a circuit design method and an action principle of the circuit was proposed. To verify the proposed circuit, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF

Development an Structure and Control Algorithm of Propulsion Control for Driving Railway Vehicle in Both AC and DC Power Supply Section (AC 및 DC 전력공급구간 운전을 위한 도시철도용 추진제어시스템의 구조 및 제어 알고리즘 개발)

  • Lee, Chang-Hee;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.84-91
    • /
    • 2019
  • This study proposes a AC/DC railway vehicle control algorithm that enables simultaneous driving of AC and DC power supply sections. In the Seoul metropolitan region, trolley voltage for railway vehicle is divided into AC and DC power supplies. Therefore, AC/DC railway vehicle algorithm is essential for driving on the outskirts of the region. This study analyzes resonance and beat phenomena for simultaneously running in AC and DC power supply sections, and proposes a control algorithm for railway vehicles with the application of damping and beatless controls based on this analysis. The performance of the proposed algorithm is verified by simulation and analysis of actual driving results.

Single-stage Power Factor Corrected AC-to-DC Converter for sustain/reset Driving Power Supply of PDP TV (PDP TV의 sustain/reset 구동전원 공급을 위한 1단방식의 역률보상형 AC-to-DC 컨버터)

  • Kang, Feel-Soon;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.282-289
    • /
    • 2008
  • To improve the efficiency of PDP TV, it should minimize the power losses transpired during AC-to-DC power conversion and PDP driving process. Generally the input power supply for PDP driving employes a two-stage power factor corrected converter, and it needs additional DC-to-DC converters to supply driving power for reset circuit ed sustain driver, which has high power consumption. However, such a circuit configuration has a difficulty for the PDP market requires low cost. To alleviate this problem, a new circuit composition is presented. It integrates input power supply with reset and sustain driver in a single power stack The input power supply of the proposed circuit has a single-stage structure to minimize power conversion loss, and it directly supplies power to the sustain driver so as to reduce the system size and cost.

A High Voltage Poorer Supply for Electrostatic Precipitator with Superimposing Voltage Pulse on DC Source (펄스 및 직류 중첩형 전기집진기용 고전압 전원장치 개발 연구)

  • Kim, Jong-Soo;Rim, Geun-Hie;Lee, Sung-Jin;Kim, Seung-Min;Cho, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.624-630
    • /
    • 2001
  • The trend of the regulations on environmental issues are getting tight. Responding to this trend new technologies such as moving electrodes, wide pitch and pulsed power supply are also introduced in the electrostatic precipitator(EP) systems. The introduction of wide pitch and moving electrodes enhances the system performance of the EPs by improving air-flow and by improving the ash reentrainment on rapping. The power supplies for the EPs developed up to date include thyristor-based dc or intermittent type, SMPS(switching mode power supply) type and the pulsed-power supply type. The use of the pulsed ones is known to improve dust-collecting efficiency of high resistivity ash and reduces back corona occurrence in the collecting plate. There are two kinds of pulsed-power supplies; one with pulsed transformers and the other with direct dc switching devices. The latter uses rotary spark gap switches or semiconductor switches. Both have the merits and demerits: the spark gap switches are simple and robust but has short life time, hence, high maintenance cost, whereas the semiconductor switches have long life time but are costly. In this study, A high voltage power supply with superimposing voltage pulse on dc source was developed for EPs. This study describes circuit topology, operating principle of the scheme, and analysis of experimental results on Dong-Hae Power Plant. The pulsed power supply consists of a variable dc power supply with ratings of 60kV, 800mA and pulse generator which is made of high voltage thyristor-diode switch strings, an LC resonant tank and a blocking inductor. The pulse generator generates variable pulse-voltage up to 70kV using a high frequency resonant inverter with a variable dc source. Two prototypes were built and tested on 250MW DongHae power plant to verify the possibility of the commercial use and the normal operation in the transient states.

  • PDF

Comparative Study on 220V AC Feed System and 300V DC Feed System for Internet Data Centers

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Internet Data Centers (IDCs), which are essential facilities in the modern IT industry, typically have scores of MW of concentrated electric loads. The provision of an Uninterruptible Power Supply (UPS) is necessary for the power feed system of IDCs owing to the need for stable power. Thus, conventional IDC AC power feed systems have three cascaded power conversion stages, (AC-DC), (DC-AC), and (AC-DC), resulting in a very low conversion efficiency. In comparison, DC power feed systems require only a single power conversion stage (AC-DC) to supply AC main power to DC server loads, resulting in comparatively high conversion efficiency and reliability [4-11]. This paper compares the efficiencies of a 220V AC power feed system with those of a 300V DC power feed system under equal load conditions, as established by the Mok-Dong IDC of Korea Telecom Co. Ltd. (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is approximately 15% higher than that of the 220V AC power feed system.

A Study on AC Chopper Based DC Power Supply (교류쵸퍼를 기반으로 한 직류전원장치에 관한 연구)

  • Lee, In-Hwan;Lee, Seung-Yong;Lee, Hyeong-Joo;Kim, Myeong-Soo;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.164-165
    • /
    • 2012
  • This paper proposes an AC Chopper based DC power supply for specific DC voltage ranges. AC chopper is attached to the input side of PFC to generate specific ranges of DC voltage which are not available with PFC itself alone. The input power factor of the proposed DC power supply is proportional to that of PFC. Performance of the proposed power supply was verified by carrying out simulations.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.902-904
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.V.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3114-3116
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%] of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2462-2464
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a Practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1820-1822
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF