• 제목/요약/키워드: DC Power

검색결과 6,496건 처리시간 0.041초

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

Mitigation of Negative Impedance Instabilities in a DC/DC Buck-Boost Converter with Composite Load

  • Singh, Suresh;Rathore, Nupur;Fulwani, Deepak
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1046-1055
    • /
    • 2016
  • A controller to mitigate the destabilizing effect of constant power load (CPL) is proposed for a DC/DC buck-boost converter. The load profile has been considered to be predominantly of CPL type. The negative incremental resistance of the CPL tends to destabilize the feeder system, which may be an input filter or another DC/DC converter. The proposed sliding mode controller aims to ensure system stability under the dominance of CPL. The effectiveness of the controller has been validated through real-time simulation studies and experiments under various operating conditions. The controller has been demonstrated to be robust with respect to variations in supply voltage and load and capable of mitigating instabilities induced by CPL. Furthermore, the controller has been validated using all possible load profiles, which may arise in modern-day DC-distributed power systems.

하프 브릿지 푸쉬 풀 DC/DC 컨버트를 이용한 전자석 전원 개발 (Development of Magnet Power Supply using Half Bridge Push Pull DC/DC Converter)

  • 김성철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2030-2032
    • /
    • 1998
  • It is always necessary to high performance power supplies for the magnet system in the accelerator, especially when the number of power supplies are large. When have developed the compact power supply using switching technology instead of SCR phase control. We adopt the pulse width modulation(PWM) method with a half bridge DC/DC converter. In this way, we can make a compact system with light weight and small volume. Actual system we developed is 1.2kW, 35V/35A bipolar DC power supply current precision of +/-0.02%. It is possible to mount 10 unit in a conventional 19 rack. The built in controller has an RS422 protocol to drive 10 unit by one serial port up to 1.2km distance. If we adopt RS485 protocol, one serial port can control 32 power supplies. In this paper, we will report the design and performance of the prototype power supply.

  • PDF

Evaluation and Optimization of Power Electronic Converters using Advanced Computer Aided Engineering Techniques

  • Oza, Ritesh;Emadi, Ali
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.69-80
    • /
    • 2003
  • Computer aided engineering (CAE) is a systematic approach to develop a better product/application with maximum possible options and minimum transition time. This paper presents a comprehensive feasibility analysis of various CAE techniques for evaluation and optimization of power electronic converters and systems. Different CAE methods for analysis, design, and performance improvement are classified. In addition, their advantages compared to the conventional workbench experimental methods are explained in detail and through examples.

Rack-Level DC Power Solution for Volume Servers

  • Kwon, Won-Ok;Seo, Hae-Moon;Choi, Pyung
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.940-949
    • /
    • 2010
  • Rack-level DC power supply is the optimal technology for providing DC power to a volume server without any power infrastructure changes in an existing AC data center. In this paper, we propose a smartly controllable and monitorable DC rack power system. The proposed system improves power efficiency by changing the power distribution architecture of a conventional method in the rack. We developed an optimal power control method in multipower modules to provide high efficiency at low loads. In addition, the proposed system provides real-time web monitoring of the rack power and environment around a rack. In our experiments, the proposed system improved the power efficiency by over 10% compared to an AC power system providing N+1 redundant power and power monitoring.

Study of Bidirectional DC-DC Converter Interfacing Energy Storage for Vehicle Power Management Using Real Time Digital Simulator (RTDS)

  • Deng, Yuhang;Foo, Simon Y.;Li, Hui
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.479-489
    • /
    • 2011
  • The bidirectional dc-dc converter, being the interface between Energy Storage Element (ESE) and DC bus, is an essential component of the power management system for vehicle applications including electric vehicle (EV), hybrid electric vehicle (HEV), and fuel cell vehicle (FCV). In this paper, a novel multiphase bidirectional dc-dc converter interfacing with battery to supply and absorb the electric energy in the FCV system was studied with the help of real time digital simulator (RTDS). The mathematical models of fuel cell, battery and dc-dc converter were derived. A power management strategy was developed and first simulated in RTDS. A Power Hardware-In-the-Loop (PHIL) simulation using RTDS is then presented. The main challenge of this PHIL is the requirement for a highly dynamic bidirectional Simulation-Stimulation (Sim-Stim) interface. This paper describes three different interface algorithms. The closed-loop stability of the resulting PHIL system is analyzed in terms of time delay and sampling rate. A prototype bidirectional Sim-Stim interface is designed to implement the PHIL simulation.

Series Resonant ZCS- PFM DC-DC Converter using High Frequency Transformer Parasitic Inductive Components and Lossless Inductive Snubber for High Power Microwave Generator

  • Kwon, Soon-Kurl;Saha, Bishwajit;Mun, Sang-Pil;Nishimura, Kazunori;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.18-25
    • /
    • 2009
  • Conventional series-resonant pulse frequency modulation controlled DC-DC high power converters with a high-frequency transformer link which is designed for driving the high power microwave generator has the problem of hard switching commutation at turn-on and turn-off of active power switching devices. This problem is due to the influence of the magnetizing current of the high-frequency transformer. This paper presents a novel prototype for a high-frequency transformer using parasitic parameters with a lossless inductive snubber and a series resonant capacitor assisted series-resonant zero current switching pulse frequency modulated DC-DC power converter, which is designed using a high power magnetron for microwave ovens. In order to implement a complete and efficient soft switching commutation, the performance of the new converter topology is practically confirmed and evaluated in the prototype of a power microwave generator.

Super-Lift DC-DC Converters: Graphical Analysis and Modelling

  • Zhu, Miao;Luo, Fang Lin
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.854-865
    • /
    • 2009
  • Super-lift dc-dc converters are a series of advanced step-up dc-dc topologies that provide high voltage transfer gains by super-lift techniques. This paper presents a developed graphical modelling method for super-lift converters and gives a thorough analysis with a consideration of the effects caused by parasitic parameters and diodes' forward voltage drop. The general guidelines for constructing and deriving graphical models are provided for system analysis. By applying it to examples, the proposed method shows the advantages of high convenience and feasibility. Both the circuit simulation and experimental results are given to support the theoretical analysis.

축전지 구동 응용을 위한 새로운 승압형 DC/DC 컨버터 (A New Isolated Boost DC/DC Converter for Battery Drive Applications)

  • 노정욱;한승훈;윤명중
    • 전력전자학회논문지
    • /
    • 제5권1호
    • /
    • pp.34-38
    • /
    • 2000
  • 낮은 입력 전압원 응용에 적합한 절연된 승압형 dc/dc 컨버터를 제안한다. 제안된 컨버터는 자기 결합 기법을 사용하여 낮은 스위칭 전류 스트레스, 넓은 입력 전압 범위, 돌입전류 방지등의 특성을 가진다. 비교 분석과 실험결과를 통하여 제안된 컨버터의 우수성을 입증한다.