• Title/Summary/Keyword: DC Electric Field

Search Result 286, Processing Time 0.022 seconds

Design of a Speed Controller for the Separately Excited DC Motor in Pure Electric Vehicle Applications (순 전기 자동차용 타여자 직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.181-184
    • /
    • 2006
  • In this study, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor with uncertainties and disturbances. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation and experiment results are provided to demonstrate the effectiveness of the proposed controller in the future.

  • PDF

Breakdown Characteristic of Transformer Oil Depending on Tip Radius (침전극 곡률 반경에 따른 절연유의 절연파괴 특성)

  • Lee, J.S.;Jeong, S.H.;Lee, H.K.;Lim, K.J.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1478-1480
    • /
    • 1997
  • We investigated the breakdown characteristic of mineral oil according to applied voltage and tip radius. In this experiment, electrode system was point-plane geometry. The tip radius of needle was 5, 10, 20 and $25{\mu}m$, respectively. Applied voltage was AC and DC. We measured breakdown voltage for each tip radius with increasing electrode gap, 2mm to 10mm. Under nonuniform electric field, breakdown strength was higher when needle was negative than when needle was positive. Because it is polarity effects due to space charge. And the more sharp tip radius, whether we applied AC or DC, the higher breakdown strength. As tip radius increase, breakdown strength decreases exponentially.

  • PDF

DC Characteristics of AIGaAs/GaAs HBTs with different Emitter/Base junction structures (접합구조에 따른 AIGaAs/GaAs HBT의 DC 특성에 관한 연구)

  • 김광식;유영한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.67-70
    • /
    • 2000
  • In this paper, all SCR recombination currents including setback and graded layer's recombination currents are analytically introduced for the first time. Different emitter-base structures are tested to prove the validity of the model. In 1995, the analytical equations of electric field, electrostatic potential, and junction capacitance for abrupt and linearly graded heterojunctions with or without a setback layer was derived. But setback layer and linearly graded layer's recombination current was considered numerically. In this paper, recombination current model included setback layer and graded layer is proposed. New recombination current model also includes abrupt heterojunction's recombination current model. In this paper, new recombination current model analytically explains effects of setback layer and graded layer.

  • PDF

Excitation System Stress in Synchronous Machine Connected to HVDC System (HVDC 단에 연결된 동기기의 여자시스템 스트레스)

  • Kim, Chan-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.482-492
    • /
    • 2002
  • This paper deals with overvoltage stresses in the field circuit of synchronous machine connected to HVDC terminal. A load rejection of the HVDC may cause generator in the station to become self-excited, resulting in a severe system overvoltage. This paper shows that violent field current oscillations can be produced by resonance between the machine inductance and the terminal capacitance. As most conventional excitation system do not allow reverses current, new topology of excitation system to allow reverse current is proposed. the proposed system can limit the rate of rise of terminal voltage during conditions of self excitation. Apart from these simulations, the nature(Magnitude and frequency) of the field transient state is explained mathematically. Finally, the EMTDC program is used for the simulation studies.

Effect of the Electric Field on the Plant Protoplasts During Cell Fusion (세포융합시 전계하에서 식물세포가 받는 영향에 관한연구)

  • Lee, Sang-Hoon;Lee, Yon-Min;Cha, Hyeon-Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.173-178
    • /
    • 1996
  • The objective of this paper is to investigate the effect of AC field on the protoplast of plant cells. The results of investigation will be the basis for the development of etectric cell fusion device. For the experiment, we made the electrode and AC and DC pulse generator and observed the behavior of the protoplasts through the inverted microscope which is connected to the monitor and video recorder by the CCD camera. As a result, the numbers of rotating, moving and destructed protoplasts and viability of the protoplasts have close relation to the amplitude of AC field, while the rotation rate is closely related to the frequency of AC pulse.

  • PDF

A Study on the Microwave Reflection of Plasma in a Magnetic Field (방전프라즈마내 자계에 의한 마이크로파 반사특성)

  • 김봉열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 1969
  • The characteristics of microwave reflection in the media of cold gaseous plasma is analysed to various external magnetic flux density. The DC discharge plasma is generated in the rectangular waveguide which contains two electrodes and helium gas at the pressure of 10-2mm Hg. The reflected and transmitted power of microwave is measured when the electric field is parallel to, and perpendicular to the external magnetic field. It shows that the reflected power is increased as the magnetic flux density is increased in the parallel case, but the maximum value of the reflected power is occured at the cyclotron resonance (3120 Gauss) in the perpendicular case.

  • PDF

Optimum AC losses Determination for Duty Cycle of Superconductive Magnetic Energy Storage (초전도에너지 저장장치의 운전주기에 따른 최적교류손실 결정에 관한 연구)

  • Hwang, Seuk-Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.653-667
    • /
    • 1990
  • Superconductor is consolidated, for required current capacity, with proper numbers of basic strands which are multifilamentary composites. Althouth superconductors are perfectly loss-free under DC conditions of current and field, AC losses occur under time-varying condition of the current and field. The AC losses are a controllable inherent characteristics of supercondectors. The AC losses dependent on the changing rate of current and field can be reduced by reducing the filament diameter. On the other hand, finer filament results in manufacturing cost increase. Therefore, in this paper optimization technique of superconductor for SMES is proposed from the viewpoint of AC loss reduction and manufacturing cost increase. The case study shows that the technique can be effectively used for the design of superconductor for SMES, appreciating the influence of various parameters related to superconductor itself and operating condition of SMES. As a result of the case study, it is confirmed that the technique is more effective for the design of superconductor for SMES for electric power power system stabilization rather then SMES for energy storage.

  • PDF

Development plan for a persistent 1.3 GHz NMR magnet in a new MIRAI project on joint technology for HTS wires/cables in Japan

  • Yanagisawa, Y.;Suetomi, Y.;Piao, R.;Yamagishi, K.;Takao, T.;Hamada, M.;Saito, K.;Ohki, K.;Yamaguchi, T.;Nagaishi, T.;Kitaguchi, H.;Ueda, H.;Shimoyama, J.;Ishii, Y.;Tomita, M.;Maeda, H.
    • Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • The present article briefly overviews the plan for a new project on joint technology for HTS wires/cables and describes the development plan for the world's highest field NMR magnet, which is a major development item in the project. For full-fledged social implementation of superconducting devices, high temperature superconducting (HTS) wire is a key technology since they can be cooled by liquid nitrogen and they can generate a super-high magnetic field of >>24 T at liquid helium temperatures. However, one of the major drawbacks of the HTS wires is their availability only in short lengths of a single piece of wire. This necessitates a number of joints being installed in superconducting devices, resulting in a difficult manufacturing process and a large joint resistance. In Japan, a large-scale project has commenced, including two technical demonstration items: (i) Development of superconducting joints between HTS wires, which are used in the world's highest field 1.3 GHz (30.5 T) NMR magnet in persistent current mode; the joints performance is evaluated based on NMR spectra for proteins. (ii) Development of ultra-low resistive joints between DC superconducting feeder cables for railway systems. The project starts a new initiative of next generation super-high field NMR development as well as that of realization of better superconducting power cables.

  • PDF

DC Characteristics of P-Channel Metal-Oxide-Semiconductor Field Effect Transistors with $Si_{0.88}Ge_{0.12}(C)$ Heterostructure Channel

  • Choi, Sang-Sik;Yang, Hyun-Duk;Han, Tae-Hyun;Cho, Deok-Ho;Kim, Jea-Yeon;Shim, Kyu-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.106-113
    • /
    • 2006
  • Electrical properties of $Si_{0.88}Ge_{0.12}(C)$ p-MOSFETs have been exploited in an effort to investigate $Si_{0.88}Ge_{0.12}(C)$ channel structures designed especially to suppress diffusion of dopants during epitaxial growth and subsequent fabrication processes. The incorporation of 0.1 percent of carbon in $Si_{0.88}Ge_{0.12}$ channel layer could accomodate stress due to lattice mismatch and adjust bandgap energy slightly, but resulted in deteriorated current-voltage properties in a broad range of operation conditions with depressed gain, high subthreshold current level and many weak breakdown electric field in gateoxide. $Si_{0.88}Ge_{0.12}(C)$ channel structures with boron delta-doping represented increased conductance and feasible use of modulation doped device of $Si_{0.88}Ge_{0.12}(C)$ heterostructures.

Fabrication of PPLN by Real-Time Control of a Transferred Charge and Analysis of Domain Inversion Process (주입 전하량의 실시간 제어에 의한 PPLN 제작 및 분극반전 과정 분석)

  • Kwon, Jai-Young;Kim, Hyun-Deok;Song, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • We proposed a PPLN fabrication setup that measures the voltage and current applied to $LiNbO_3$ in real time during application of a DC electric field. Because the duration for transferring a sufficient electron charge to $LiNbO_3$ increases, we are able to control the electron charge flow transferred to $LiNbO_3$ efficiently. We divided the domain inversion process of PPLN into 5 states: Nucleation (state 1), Spread of the domain inversion region under the electrode(state 2), Accumulation of the electron charge at the insulator/$LiNbO_3$ interface(state 3), Domain inversion under the insulator layer after breakdown(state 4), and Lowering the electric field applied to $LiNbO_3$ (state 5). We have found that the Threshold Point is essential for the domain inversion and that the domain inversion process must be stopped within state 3 for the optimum PPLN. Using these results, we could fabricate a stable and reproducible PPLN efficiently.